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SUMMARY

Argonaute proteins repress gene expression and
defend against foreign nucleic acids using short
RNAs or DNAs to specify the correct target RNA or
DNA sequence. We have developed single-molecule
methods to analyze target binding and cleavage
mediated by the Argonaute:guide complex, RISC.
We find that both eukaryotic and prokaryotic Argo-
naute proteins reshape the fundamental properties
of RNA:RNA, RNA:DNA, and DNA:DNA hybridiza-
tion—a small RNA or DNA bound to Argonaute as a
guide no longer follows the well-established rules
by which oligonucleotides find, bind, and dissociate
from complementary nucleic acid sequences. Argo-
nautes distinguish substrates from targets with
similar complementarity. Mouse AGO2, for example,
binds tighter tomiRNA targets than its RNAi cleavage
product, even though the cleaved product contains
more base pairs. By re-writing the rules for nucleic
acid hybridization, Argonautes allow oligonucleo-
tides to serve as specificity determinants with ther-
modynamic and kinetic properties more typical of
RNA-binding proteins than of RNA or DNA.

INTRODUCTION

MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) direct

Argonaute proteins to repress cellular mRNAs and silence vi-

ruses and transposons. In animals, siRNAs typically direct target

cleavage, whereas miRNAs guide target binding, allowing Argo-

naute to recruit proteins that trigger exonucleolytic RNA degra-

dation or inhibit translational initiation or elongation (Huntzinger

and Izaurralde, 2011). Argonaute proteins comprise three

distinct domains (Song et al., 2004). The Mid domain binds the

50 phosphate of the guide RNA, anchoring it to the protein

(Wang et al., 2008b). The PAZ domain binds the 30 end of the

guide, facilitating Argonaute loading (Song et al., 2003; Lingel

et al., 2004; Ma et al., 2004; Tomari and Zamore, 2005). The

PIWI domain catalyzes target cleavage (Liu et al., 2004; Martinez

and Tuschl, 2004; Schwarz et al., 2004; Wang et al., 2008a;

Wang et al., 2009b; Schirle et al., 2014). Some animal Argonaute

proteins contain an additional N-terminal domain that prevents

base pairing of the target to the guide beyond guide position

g16 (Kwak and Tomari, 2012; Faehnle et al., 2013; Hauptmann

et al., 2013).

Animal miRNAs bind their targets via guide nucleotides g2–g8

(Lewis et al., 2003; Rajewsky and Socci, 2004; Krek et al., 2005;

Lewis et al., 2005; Lim et al., 2005). Argonaute pre-organizes

these ‘‘seed’’ nucleotides into a conformation favorable for

base pairing (Ma et al., 2004; Parker et al., 2005; Wang et al.,

2008b; Elkayam et al., 2012; Nakanishi et al., 2012), pre-paying

the entropic penalty inherent in base pairing to a target (Parker

et al., 2009). Consequently, the seed sequence determines the

binding specificity of Argonaute.

siRNAs generally base pair more extensively to their target

RNAs than miRNAs. In mammals, only AGO2 can cleave RNA

(Faehnle et al., 2013; Hauptmann et al., 2013). Efficient endonu-

cleolytic cleavage of a target—always between target nucleo-

tides t10 and t11—requires that the guide base pairs at least

five to eight nucleotides beyond the seed; ‘‘zippering’’ of the

guide:target helix allows the enzyme to attain a catalytically

competent conformation but provides little additional binding

energy (Elbashir et al., 2001a; Elbashir et al., 2001b; Haley and

Zamore, 2004; Rivas et al., 2005; Ameres et al., 2007; Wang

et al., 2008a; Wang et al., 2009a).

The fundamental properties of �21 nt RNA oligomers make

them poor guides for directing gene regulation. Single-stranded,

50 monophosphorylated RNA is readily degraded by endo- and

exonucleases and can form intra- and intermolecular structures

that inhibit target binding. At physiological temperature, pH, and

ionic strength, 21 nt RNA oligomers bind with little specificity,

accommodating insertions, deletions, and mismatches, and

sub-sequences > 12 nt can hybridize stably to complementary

sites (Herschlag, 1991). Moreover, the rate of RNA and DNA hy-

bridization is limited by the rate of successful collisions that

convert to stable binding events (Ross and Sturtevant, 1960;

Ross and Sturtevant, 1962; Nygaard and Hall, 1964; Wetmur

and Davidson, 1968). This slow on-rate (kon) means that the

search for complementary targets is rate determining. Once

formed, 21 bp RNA:RNA duplexes are nearly irreversible in phys-

iological conditions: a fully base-paired double-stranded RNA

composed of let-7a and its complement is predicted to have a

KD = 6.3 3 10�7 nM, implying a koff = 5.7 3 10�9 s�1 (t = �5.6

years). In contrast, an 8 bp duplex formed with just the let-7a

seed sequence is unstable—the predicted KD = 56 mM implies
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a koff = 52 s�1 (t = �20 ms). Argonaute proteins change all of

these properties of nucleic acids.

We sought to understand how Argonaute proteins overcome

the limitations inherent in their guides. Here, we show that Argo-

naute proteins reshape the fundamental properties of RNA:RNA,

RNA:DNA, and DNA:DNA hybridization. Once bound to Argo-

naute, a small RNA or DNA guide no longer follows the well-

established rules for finding, binding, and dissociating from

complementary nucleic acid sequences. By re-writing the rules,

Argonautes convert oligonucleotides into specificity determi-

nants with thermodynamic and kinetic properties more typical

of RNA-binding proteins than of nucleic acids.

RESULTS

To measure the properties of RISC, we used multi-color, total

internal reflection fluorescence microscopy to excite only

those fluorescent molecules immediately above the slide

A C

E

B

D

Figure 1. Single-Molecule Analysis of

Nucleic Acid-Guided Argonaute Proteins

(A) Strategy to measure RNA- or DNA-guided

Argonaute interactions with RNA or DNA targets.

(B) Standard ensemble Michaelis-Menten analysis

of target cleavage for an RNA guide and a 30

Alexa555-labeled RNA guide. Mean ± SD (n = 3).

(C) Unlike target with a single Alexa647 dye,

the stepwise photobleaching of a target with 17

Alexa647 dyes is readily distinguished from target

cleavage.

(D) A trace of an individual molecule of target RNA

undergoing RNAi catalyzed bymouse AGO2with a

let-7a RNA guide. Colored bars above trace

summarize the species observed here and in the

rastergrams.

(E) Color-coded rastergram representation of

let-7a-guided AGO2 binding and cleaving a fully

complementary RNA target. The rastergram pre-

sents 426 individual RNA target molecules, each in

a single row.

See also Figure S1 andMovies S1, S2, S3, and S4.

surface (Friedman et al., 2006).

Alexa647-labeled target RNA was

attached to a glass surface and then

incubated with purified RISC containing

a 30 Alexa555-labeled guide strand

(Figure 1A). Dye addition did not mean-

ingfully affect the activity of mouse

AGO2 guided by let-7a RNA—standard

ensemble experiments found similar

KM (1.7 ± 0.1 nM versus 1.2 ± 0.2 nM)

and kcat (7.8 ± 0.2 3 10�2 sec�1 versus

6.6 ± 0.4 3 10�2 sec�1) values for un-

modified and 30 Alexa555-labeled

guides (Figures 1B and S1A). Further-

more, KM values agree well with that of

human AGO2-RISC (mouse AGO2 is

99% similar to human AGO2, differing

only in seven N-terminal amino acids;

Martinez and Tuschl, 2004; Rivas et al., 2005; Ameres et al.,

2007).

To distinguish photobleaching from target cleavage, we con-

structed a 141 nt RNA target containing 17 Alexa647 dyes within

a 148-nt DNA 30 extension. The brightness of this target allowed

us to reduce laser power, which decreased the photobleaching

rate and permitted long observation times (Figure 1C and Sup-

plemental Experimental Procedures). The resulting stepwise

photobleaching of multiple Alexa647 dyes was readily distin-

guishable from the all-or-none fluorescence change caused by

target cleavage and 30 product release.

RISC Changes the Rate-Determining Step for Nucleic
Acid Hybridization
Pre-organization by Argonaute of the seed sequence into a

stacked conformation has been proposed to make productive

collisions with target more likely. The association rate constant,

kon, for mammalian AGO2 has been inferred from KD and koff
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values measured in ensemble binding experiments (Wee et al.,

2012) or estimated by fitting pre-steady state ensemble data to

a three-phase exponential model in which the fastest phase

was assumed to correspond to kon (Deerberg et al., 2013).

To measure kon directly, we simultaneously recorded the fluo-

rescence of individual target RNAs attached to the slide and in-

dividual molecules of fluorescent mouse AGO2-RISC (Figure 1D

and Movies S1 and S2 and Supplemental Experimental Proce-

dures). For each target molecule, RISC arrival was taken to be

the first detectable co-localization of RISC and target. We readily

detected RISC molecules that remained co-localized with target

R 200 ms (Supplemental Experimental Procedures). In Fig-

A

B

Figure 2. Argonaute Accelerates Guide

Binding to Target

(A) Comparison of target binding rates (kon) by 21

nt RNA-guided mouse AGO2- and 16 nt DNA-

guided TtAgo versus the RNA or DNA guide

strands alone. Cumulative binding fraction plots

are accompanied by the fluorescence intensity

trace for a representative individual molecule. Red

arrowheads, photobleaching of the Alexa555

guide; blue arrowheads, stepwise photobleaching

of a single Alexa647 group; F, Förster resonance

energy transfer from the Alexa555 guide to the

Alexa647 target.

(B) Comparison of kon values for mouse AGO2-

let-7a and TtAgo-let-7a. For let-7a and miR-21

RNA targets, mouse AGO2 and RNA alone values

are reported as mean ± SD (n = 3), with >1,000

individual molecules collected. All other values

were measured using several hundred individual

molecules, and error of fit is reported.

See also Figures S2, S3, S4, and S5, Table S1, and

Movies S1, S2, S3, and S4.

ure 1D, for example, when RISC arrives

at �40 s, the Alexa 555 fluorescence

co-localizing with the Alexa647 target in-

creases in a single step; it remains high

until both Alexa555 (RISC) and Alexa647

(target) fluorescence drop to baseline at

�60 s, signifying target cleavage and

simultaneous departure of RISC and the

30 cleavage product. Figure 1E displays

426 individual single-molecule traces,

ordered by time of target cleavage, as a

‘‘rastergram.’’ Rastergrams summarize

arrivals, departures, and target cleavage

events for many individual target

molecules.

To understand how AGO2 changes the

rate at which an oligonucleotide arrives at

a target, we compared kon of naked let-7a

RNA and AGO2-bound let-7a (Figure 2).

After arriving at the target, naked let-7a

and AGO2-bound let-7a follow different

paths. Formation of a 21 bp RNA:RNA

duplex is essentially irreversible under

physiological conditions, so observation

of let-7a ended when its Alexa555 label photobleached. The

target, labeled with 17 Alexa647 dyes, gradually lost fluores-

cence via discrete photobleaching events (Figure 2A andMovies

S3 and S4). In contrast, binding of let-7a RISC ended with

target cleavage; Alexa555 and Alexa647 signals were lost

simultaneously.

On-rates (kon) for RISC or let-7a alone were determined by

fitting the cumulative distribution of arrivals to a single exponen-

tial, corrected for non-specific binding to the slide (Figure S1B

and Supplemental Experimental Procedures). The kon of let-7a

RNA alone hybridizing to a complementary target (9.1 ± 1.7 3

106 M�1∙s�1) was considerably slower than the rate of
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macromolecular diffusion (Figures 2A and S2). let-7a comprises

only A, G, and U nucleotides. Our measured kon for let-7a RNA

agrees well with previous estimates for short oligonucleotides

lacking G or C (Zhang et al., 2014). In comparison, kon for

AGO2-bound let-7a, 3.9 ± 0.5 3 108 M�1∙s�1, was �43-fold

faster than for let-7a alone (Figures 2A, S2, and S3). Thus, as pro-

posed previously (Wee et al., 2012; Deerberg et al., 2013; Jung

et al., 2013), Argonaute accelerates productive arrival of its guide

at a complementary target sequence.

The unusual sequence composition of let-7a understates the

general enhancement in target finding. Naked miR-21, which

contains all four nucleotides, bound a complementary RNA

target �17 times more slowly than let-7a alone (Figures 2, S2,

and S3). Mouse AGO2 accelerated miR-21 binding �250-fold.

We conclude that AGO2 generally accelerates target finding so

that kon approaches the rate of macromolecular diffusion.

Acceleration of target finding is likely a general property of Ar-

gonaute proteins. We measured kon for TtAgo, the DNA-guided

Argonaute protein (Swarts et al., 2014) from the eubacterium

Thermus thermophilus. T. thermophilus grows at 62�C to 75�C
(Cava et al., 2009), and TtAgo does not efficiently cleave either

RNA or DNA at 37�C (Figure S4A). Control experiments estab-

lished that the addition of an Alexa555 dye to the 30 end of a

DNA guide does not alter the ensemble binding properties of

TtAgo (Figure S4B). In vivo, TtAgo binds 16 nt DNA guides

(S.M.J. and P.D.Z., unpublished data), so we loaded TtAgo at

75�C with a single-stranded DNA corresponding to the first 16

nt of let-7a and then measured its binding at 37�C. The naked

16 nt let-7a guide bound a complementary RNA �140 times

more slowly (kon = 4.6 ± 0.1 3 105 M�1∙s�1) than the same

TtAgo-bound DNA guide (kon = 6.2 ± 0.13 107 M�1∙s�1; Figures

2 and S4C).

Why is kon for TtAgo �6 times slower than for AGO2? We sus-

pect that, at 37�C, TtAgo spends less time in a binding-compe-

tent conformation, which is consistent with its greater cleavage

activity at 75�C (Figure S4A). We conclude that both mouse

AGO2 and TtAgo alter kon, the rate-determining step for nucleic

acid hybridization, ensuring that the speed at which Argonaute

finds a complementary target RNA or DNA is limited by the

rate of macromolecular diffusion.

Argonaute Accelerates Target Finding by Creating the
Seed Sequence
Argonaute proteins divide their guide RNAs into discrete func-

tional domains. To determine which domain contributes most

to the enhancement of target binding, we measured kon using

(1) a target complementary just to the seed (g2–g8); (2) a target

complementary to both the seed and the region of 30 supplemen-

tary pairing (g13–g16); and (3) a target with complete comple-

mentarity to the guide (g2–g21; Figures 2B, S2, and S3). For

each target RNA, we determined kon for the guide alone or

loaded into AGO2 (Figures 2, S2, and S3). For a control RNA

with % 6 nt complementary to any region of the let-7a and % 4

nt complementary to the let-7a seed, we were unable to detect

any binding interactions above background binding to the slide

(Figure S5A).

Structural comparisons of eubacterial and human AGO2 show

that an N-terminal Argonaute domain prevents pairing beyond

g16 in animal Argonautes; computational analyses of piRNAs

in flies, silk moths, and mice suggest that target cleavage does

not require complementarity beyond target position t16 (Wang

et al., 2009b; Kwak and Tomari, 2012; Wee et al., 2012; Faehnle

et al., 2013; Hauptmann et al., 2013; Wang et al., 2014). Thus,

even targets with complete complementarity to a guide are un-

likely to pair past g16 when bound to RISC.

In the absence of protein, nucleic acid hybridization is favored

bygreater complementarity, presumably becausemorepotential

base pairs provide more opportunities for nucleation, the rate-

determining step for binding (Egli andSaenger, 1984). Consistent

with this principle, kon of naked let-7a RNA increased�2-fold be-

tween seed-only (g1–g8) or seed plus 30 supplementary pairing

(g1–g8 plus g13–g16) targets and the fully complementary target

(g1–g21) (Figures 2B and S2). Yet when loaded in AGO2-RISC,

let-7a bound all three targets with similar, near diffusion-limited

on-rates (Figures 2B and S2). In contrast, the apparent rate of

RISC finding an RNA fully complementary to let-7a except for

the seed (3.6 ± 0.23 107 M�1∙s�1) was�10-fold slower (Figures

2B and S5C). We observed similar kon effects for miR-21 RISC,

whose kon was �20-fold faster than miR-21 RNA alone

when binding a target with complementarity only to the seed

(1.1 ± 0.13 107M�1∙s�1) or to both the seed and four, 30 supple-
mentary bases (1.7 ± 0.1 3 107 M�1∙s�1; Figure S2). We

conclude that the seed sequence created by mouse AGO2 ac-

counts for most of the enhancement in the rate of target finding.

To further test this idea, we measured kon for a series of six

target RNAs bearing a dinucleotide mismatch in their seed-com-

plementary sequence (Figures 3A, S3, and S5C). We performed

these experiments at 10 frames∙s�1, but kon values did not

change at 25 frames∙s�1 (data not shown). Compared to a

seed-matched target, dinucleotide mismatches at guide posi-

tions g2g3, g3g4, g4g5, or g5g6 reduced kon 6.3- to 10-fold. Mis-

matches with positions g6g7 or g7g8 reduced kon just 1.3-fold,

compared to a target complementary to the 7 nt seed. These

data further suggest that Argonautes accelerate target finding

by pre-organizing the seed and that acceleration is diminished

when the seed pairing is disrupted at positions g2–g5.

TtAgo also required seed complementarity to accelerate target

finding—kon for a DNA target complementary to the seed (7.1 ±

0.13 107M�1∙s�1) or the seed and four, 30 supplementary nucle-

otides (4.8 ± 0.1 3 107 M�1∙s�1) was essentially the same as

when the entire target was complementary to the DNA guide

(6.4 ± 0.1 3 107 M�1∙s�1; Figures 2 and S2 and Table S1).

A diffusion-limited bimolecular reaction is slower at higher vis-

cosity (Berg and vonHippel, 1985). To test whether target finding

by AGO2 similarly depends on viscosity, we measured kon for

mouse let-7a-RISC in 0%, 20%—our standard conditions—or

50% glycerol (Figure S5B). As predicted for a diffusion-limited

process, kon for a fully complementary target decreased with

increasing viscosity: 6.4 ± 0.1 3 108 M�1∙s�1 in 0%, 3.9 ± 0.5

3 108 M�1∙s�1 in 20%, and 1.7 ± 0.1 3 108 M�1∙s�1 in 50%

glycerol.

Seed Mismatches Cause Rapid Dissociation of Mouse
AGO2 RISC
Ensemble experiments at 25�C show that mouse AGO2-RISC

departs slowly from seed-matched targets (t �2,000 s at 25�C;
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Wee et al., 2012), a timescale too long for direct observation of

individual fluorescent molecules: photobleaching generally oc-

curs before a departure is observed (Supplemental Experimental

Procedures). As an alternative strategy to measure koff at 37
�C,

a more physiologically appropriate temperature, we measured

apparent koff over a range of laser exposure and extrapolated

to no exposure to obtain koff: 0.0036 ± 0.0003 s�1, �280 s (Fig-

ure S5D). Photobleaching was much slower than dissociation

for less complementary targets, so koff was readily measured

by standard methods for targets containing a dinucleotide

mismatch to the seed (Figures 3B, S3, and S6). RISC dissociated

from these mismatched targets 70 to 3,200 times faster than a

fully seed-matched target. As for kon, g2–g6 base pairs within

the seed contributed more to anchoring RISC on the target

RNA than did base pairs to g7 or g8. A single-nucleotide

mismatch to g8, converting a 7 nt seed to a 6 nt seed, increased

koff 24-fold (Figures 3B and S3). Thus, AGO2 discriminates be-

tween seed-matched and seed-mismatched targets both during

its initial search and once bound. RISC finds seed-mismatched

targets more slowly and remains bound to them for less time

than fully seed-complementary targets.

Seed Pairing Explains AGO2 Binding to
miRNA-like Targets
The effect of target:guide mismatches within the seed sequence

cannot be accurately predicted from nearest-neighbor thermo-

dynamic rules (Xia et al., 1998). For example, a dinucleotide

mismatch at the end of a 7 nt seed-match is predicted to in-

crease DG for RISC:target binding by 1.7–1.9 kcal∙mol�1

compared to a fully complementary seed match target site

(g2–g8; Figure S6). In reality, the effect is much larger: a g2g3

dinucleotide mismatch (i.e., only g4–g8 paired) reduced the sta-

bility of the RISC:target complex by 6.1 ± 0.1 kcal∙mol�1,

whereas a g7g8 mismatch (g2–g6 paired) reduced the stability

of RISC binding by 2.7 ± 0.1 kcal∙mol�1 (Figure S6). Similarly,

a g3g4 mismatch, which is predicted to decrease binding stabil-

ity by 3.8 kcal∙mol�1, reduced it by 5.9 ± 0.1 kcal∙mol�1.

Additional base pairs with the 30 half of the guide (30 supple-
mentary pairing) are associated with high probability miRNA-

binding sites (Grimson et al., 2007). The addition of four 30

supplemental base pairs is predicted to change the DG37�C of

a fully base-paired let-7a seed by �3.7 kcal∙mol�1, yet our

experiments failed to detect a substantial change in binding

stability for let-7a bound to its target by seven seed base pairs

or by seven seed plus four additional 30 supplementary base

pairs (DDG37�C = �0.20 ± 0.2 kcal∙mol�1). In contrast, dissocia-

tion of AGO2 guided by miR-21, which has a more AU-rich seed

than let-7, was slowed >7-fold by adding 30 supplementary base

pairing (Figure S5E). Increasing the base-pairing strength of

the seed by replacing three seed-match adenosines with 2,6 di-

aminopurine nucleotides decreased koff 4-fold and increased

RISC affinity by –0.83 kcal∙mol�1, far less than the predicted

–3 kcal∙mol�1 (Gryaznov and Schultz, 1994; Freier and Altmann,

1997).

AGO2 Discriminates between RNA and DNA Targets
AGO2 has only been reported to regulate RNA targets. In

contrast, only DNA targets have been identified in vivo for TtAgo

(Wang et al., 2008a, 2008b; Wang et al., 2009b; Swarts et al.,

2014). How do Argonaute proteins discriminate between RNA

and DNA?We compared binding of AGO2 to RNA and DNA (Fig-

ures 2B and S2). As for RNA, AGO2 accelerated the target

finding for DNA. In fact, kon for DNA was �2.3–3.3 times faster

than for RNA (Table S1). Yet AGO2-RISC did not remain stably

bound to DNA, dissociating, on average, �2.4 s after binding a

seed-matched DNA target compared to �280 s for RNA (Table

S1 and Figures S3 and S5D). The >110-fold faster dissociation

of AGO2 from DNA suggests that, even when acting in the nu-

cleus, eukaryotic RISCs bind nascent transcripts, not single-

stranded DNA (Bühler et al., 2006; Sabin et al., 2013).

Bacterial Argonautes are thought to target foreign DNA, such

as horizontally transferred plasmids (Olovnikov et al., 2013;

Swarts et al., 2014). Consistent with this function, TtAgo bound

to and departed from RNA and DNA at similar rates (Figures

2B, S2, and S4C and Table S1).

A

B

Figure 3. Role of the Seed Sequence in Target Binding

Comparison of (A) kon and (B) koff of let-7a-guided mouse AGO2-RISC with

different targets. Values were derived from data collected from several hun-

dred individual RNA target molecules; error of fit is reported.

(A) kon values for let-7a-guided mouse AGO2-RISC to targets with complete

seed-matched pairing or seed-matched pairing bearing dinucleotide

mismatches.

(B) koff and KD values for nucleic acid in the absence of protein were predicted

from the measured kon and DG37�C of binding calculated by nearest neighbor

analysis (Reuter and Mathews, 2010; Turner and Mathews, 2010). koff was not

determined for the fully complementary target because it was cleaved.

See also Figures S2, S3, S4, S5, and S6, Table S1, and Movies S1, S2, S3,

and S4.
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A Kinetic Framework for Mammalian RNAi
For a 50-tethered target, cleavage by RISC leaves the 50 product
tethered to the slide surface, allowing detection only of RISC that

remains bound via guide nucleotides g11–g21. For let-7a-guided

AGO2, target cleavage and release of the 50 product occurred
simultaneously within the time resolution of our experiments

(e.g., Figure 1D), suggesting that release of the 50 product is
faster than that of the seed-complementary 30 product.
To measure 30 product release, we synthesized a let-7a-com-

plementary target with a 30 biotin and 17 50 Alexa647 dyes (Table

S2). Using the 30-tethered target, we detected four distinct reac-

tion species: (1) target alone, (2) RISC bound to the target, (3)

RISC bound to the 30 cleavage product, and (4) the 30 product
after RISC dissociation (Figure 4A). Experiments with 50-tethered
target detected RISC bound to 50 cleavage product and the

50 product alone, completing the set of observable species in

the RNAi reaction (Figure 4B).

As expected, the kon of let-7a-AGO2-RISC for a 30-tethered
target (3.7 ± 0.1 3 108 M�1$s�1; data not shown) was nearly

identical to kon for a 50-tethered target (3.9 ± 0.5 3 108 M�1$s�1;

Figures 2B and S2). However, the order and rates of dissociation

differed considerably for the 50 and 30 cleavage products (Fig-

ure 4B). The first product to be released was nearly always the

50 product, after which RISC slowly dissociated from the 30 prod-
uct. The 30 product is complementary to the seed sequence, and

after RISC departed, we frequently observed additional RISC

binding events to the tethered product (Figure 4B).

To quantitatively assess product release, we fit our data

(Figure 5A) to a unified reaction scheme that accounts for all

observed intermediates and products (Figure 5B). A global fit is

possible for our kinetic data because the loss or production of

different reaction species (e.g., 50- and 30-products) shares one

or more kinetic steps in the mechanism. By fitting multiple data-

sets simultaneously to the same kinetic mechanism, the rate

constants for shared steps become global parameters con-

strained to be the same for all datasets. Our proposed reaction

mechanism includes branched pathways for product release:

one branch corresponds to 50 product release followed by 30

product released (Figure 5B, k50 1st followed by k30 2nd), whereas

in the other, the order of product release is reversed (Figure 5B,

k30 1st followed by k50 2nd). Both branches achieve the same final

state: two free products and free AGO2-RISC.

Accounting for the sigmoidal kinetics of product release (Fig-

ure 5A) required an additional kinetic step that was shared by

both branches; its rate constant (k) was treated as a global

parameter for fitting. k likely corresponds to the rate of the slow-

est step in target cleavage, probably the change in Argonaute

conformation that brings the catalytic Mg2+ near the scissile

phosphate (Wang et al., 2009b; Sheng et al., 2014). The global

fit based on four experimentally measured product release

curves obtained using 50- and 30-tethered targets (Figures S7A

and S7B) defined three of the five rate constants (k, k50 1st, and

k30 1st). The rate constants (k30 2nd and k50 2nd) for release of the

30 or 50 products following release of the other product were

determined directly from the distributions of waiting times begin-

ning with the departure of the first cleavage product and ending

with the departure of the second (Figures S7A and S7B), after

subtracting the photobleaching rate.

Seed Pairing Determines the Rate of Slicing and the
Order of Product Release
To determine whether the features of cleavage and product

release observed for let-7a RISC depend on guide RNA

sequence, we performed parallel experiments with let-7a-RISC

and a 50-tethered let-7a target with t4t5 mismatches to the

seed (Figures S3 and S5C) and with miR-21-RISC and 50- and
30-tethered miR-21 targets. Global fitting of these data to our ki-

netic scheme (Figures 5B and S7A) gave the slicing and product

release rates and order.

Slicing rate depended on guide strand identity—let-7a had

the slowest slicing rate we measured (k = 0.15 s�1); miR-

21-RISC cleaved its target twice as fast (k = 0.31 s�1). The

let-7a seed has stronger predicted base pairing (DG =

�15.6 kcal∙mol�1) than miR-21 (DG = �13.3 kcal∙mol�1). The

let-7a target with seed mismatches had the weakest predicted

A

B

Figure 4. let-7a Binds Tightly to the Seed-Matched, 30 Product of

Target Cleavage

(A) A trace of an individual molecule of a 30-tethered target fully complementary

to let-7a. The trace shows that mouse let-7a-RISC bound the target (magenta

bar), cleaved the target, and then remained bound to the 30 product (red bar).

Finally, RISC departed or the guide’s Alexa555 photobleached. The 30 cleav-
age product containing the seed remains on the slide surface, allowing a new

molecule of RISC to bind.

(B) Rastergrams comparing 50-tethered (426 individual molecules) and 30-teth-
ered (452 individual molecules) RNA targets fully complementary to let-7a.
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seed base pairing (DG = �10.1 kcal∙mol�1) and cleaved faster

than the fully complementary let-7a target (k=0.20 s�1) but slower

than miR-21. Our data suggest that efficient target cleavage re-

quires seed pairing that is neither too strong nor too weak.

The relative base-pairing stability of the seed and 30 half of the
guide determines the order of product release, as evidenced by

the proportion of the reaction directed through each of the two

product-release branches (Figure 5B). For let-7a, whose seed

is predicted to pair more stably than its 30 half, the 50 product
departed first for 92% of target molecules; release of the 30

cleavage product limited the rate of enzyme turnover, kcat. For

the let-7a target with t4t5 mismatches, the 30 product left before
the 50 for 74% of molecules. In contrast, the seed and 30 half of
miR-21 have similar base pairing stabilities, and 57% of the 50

product departed first. We conclude that the order of product

release reflects the sequence of the guide and target, following

no set order.

Release of the First Product Promotes Release of
the Second
Formally, there are two rates for the release of each cleavage

product: a rate for when the product departs first and a rate for

when the same product departs second, the other product

having already dissociated. For example, k50 1st is the rate

for 50 product release in the presence of bound 30 product,
whereas k50 2nd is the rate for 50 product release after the 30

product has left. Our data suggest that release of the first

product promotes release of the second product (Figure 5).

For example, the 50 and 30 product rates for miR-21 were

both �4-fold faster when the products were released second

rather than first. Similarly, release of the 50 product of the

let-7a seed-mismatched target was 0.21 ± 0.01 s�1 when

released first but 1.3 ± 0.1 s�1 when released second. A

notable exception was the seed-matched 30 product of let-

7a target, by far the most stably bound product we examined.

A

B

Figure 5. AGO2-Catalyzed Cleavage and

Product Release

(A) Global fit analysis (Supplemental Experimental

Procedures) of 50- and 30-tethered targets for

AGO2 guided by let-7a or miR-21.

(B) The detailed kinetic scheme used for global

fitting. Rate constants are color coded according

to (A). Percentages in parentheses report the

proportion of product molecules released first.

See also Figure S7.

This 30 cleavage product dissociated at

�0.05 s�1 regardless of the presence

of the 50 product.
We can imagine two mechanisms by

which departure of one product can

accelerate dissociation of the other: (1)

binding may be mutually stabilized by

stacking interactions between the termi-

nal bases of the two products, or (2) de-

parture of one product may facilitate a

conformational change that destabilizes

the second. Such a conformational change might correspond

to the return of the endonuclease active site to the conformation

present prior to zippering of the guide:target helix 30 to the seed

sequence (Wang et al., 2009b; Elkayam et al., 2012; Schirle and

MacRae, 2012; Faehnle et al., 2013).

Strong Seed Pairing Slows RISC Turnover
The rates for target cleavage and product release allow

calculation of the overall turnover rate: kcat = k ∙ k50 1st ∙ k30 2nd/

(k ∙ k50 1st + k ∙ k30 2nd + k50 1st ∙ k30 2nd) when the 50 product
is released first, and kcat = k $ k30 1st $ k50 2nd/(k ∙ k30 1st +

k ∙ k50 2nd + k30 1st∙ k50 2nd) when the 30 product is released first.

As expected, the two pathways have similar kcat values. For

let-7a, the calculated kcat value, 0.036 ± 0.002 s�1, agrees well

with kcat determined by ensemble analysis (0.066 ± 0.004 s�1;

Figure 1C). The turnover rate was �4-fold faster for both miR-

21 (0.16 ± 0.1 s�1) and let-7a with the g4g5 seed-mismatched

target (0.13± 0.1 s�1). The slower kcat for let-7a reflects the stron-

ger seed pairing to its fully complementary target; the slow 30

product release step limits overall turnover. Both miR-21, with

its weaker pairing strength in its seed, and let-7a, with intention-

ally weakened seed pairing to a target with g4g5 mismatches,

direct faster cleavage than let-7a with a fully complementary

target; their product release rates are comparable to or faster

than k, the apparent RISC cleavage rate (Figure 5B). Thus,

siRNAs with more stable base pairing between seed and target

are predicted to cleave fewer targets per unit time than targets

whose rate of 30 product release is not rate determining.

The autoantigen protein La has been proposed to facilitate

multiple-turnover target cleavage by human AGO2 by acceler-

ating product release (Liu et al., 2011). To test this idea, we

measured the rate of multiple-turnover target cleavage by

let-7a RISC in the absence or presence of equimolar (1 nM)

or excess (50 or 500 nM) La protein (Figure S7C). We were

unable to detect any increase in target cleavage rate in the
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presence of La. We conclude that, in cells, La protein is un-

likely to overcome the rate-limiting step of product release

for let-7a RISC.

AGO2 Distinguishes between miRNA-like Binding Sites
and Cleavage Products
Although quantitatively different from the energetics of nucleic

acid hybridization, the free energy of base pairing between a

seed sequence and its target influences the rates of all steps in

the RNAi reaction, including binding and dissociation of RISC,

cleavage of the target, and release of the cleaved products.

However, one aspect of RISC function emerges from our studies

that is not predicted by the stability of guide-target base pairing:

AGO2 appears to discriminate between a miRNA-like binding

site, which typically pairs only with nucleotides g2–g8, and bind-

ing to the seed-matched, 30 product of target cleavage, which

pairs with nucleotides g2–g10 (Figure 6).

We measured the koff for let-7a-AGO2-RISC bound to targets

complementary to g2–g8 (seed), g2–g9, or g2–g10, as would be

found for a 30 cleavage product. The standard rules for nucleic

acid hybridization predict that the addition of one or two

additional base pairs beyond the seed should slow dissociation

of RISC (Figure 6). Counterintuitively, additional base pairs

increased dissociation �4-fold: koff was 0.014 ± 0.001 s�1

when g2–g9 paired with the target and 0.015 ± 0.001 s�1

(t �66 s) when g2–g10 paired but 0.0036 s�1 (t �280 s) when

only g2–g8 were paired. In vivo, miRNAs have little opportunity

to bind targets t2–t10 complementarity, but this pairing scheme

is typically found in the 30 cleavage product generated by the

RNAi pathway. In fact, RISC departed >3-fold faster from the

30 product generated by target cleavage (koff = 0.05 ± 0.01

s�1), which ends after t10, than the corresponding full-length

target and �14-fold faster than from the full-length, seed-

matched (t2–t8) target. When the 30 cleavage product was

subsequently bound by other RISC molecules, they depart at

essentially the same rate as the RISC that first catalyzed cleav-

age, koff = 0.044 ± 0.001 s�1 (t �23 s; Figure 6B).

One potential explanation for the accelerated departure of

RISC from a 30 cleavage product compared to a full-length,

seed-matched target is that the full-length target extends

far beyond position t10, providing opportunities for non-

sequence-specific interactions between AGO2 and its target.

To test this idea, we designed a series of 50 monophosphory-

lated, 30 nt RNAs that end at either position t8, t9, or t10

(Figure 6A). RISC dissociated nearly twice as fast from the 30

cleavage product mimic complementary to g2–g10 as from the

corresponding full-length target (Figure 6). RISC departed �8-

fold faster from a seed-matched 30 cleavage product mimic

than from a seed-matched, full-length target. These data rein-

force the idea that AGO2 makes sequence-independent con-

tacts with its RNA targets (Ameres et al., 2007).

Nonetheless, such contacts do not explain why RISC

departed faster when paired with t2–t9 or t2–t10 than with

t2–t8. How does g9:t9 pairing alter the properties of RISC so

that it binds more weakly to an RNA with eight or nine potential

base pairs than to an RNA with which it makes only seven? Ex-

tending base pairing beyond position g8 of the seed may require

opening the central cleft of AGO2, a presumably unfavorable

conformational change (Schirle et al., 2014). These properties

of AGO2 were not anticipated from thermodynamic predictions

for the strength of nucleic acid base pairing (Figures 6 and S6).

DISCUSSION

Argonaute proteins from both bacteria and mammals accel-

erate the rate at which their guides find complementary targets.

Argonaute can accelerate the on-rate as much as 250-fold,

and DNA-guided TtAgo and mouse RNA-guided AGO2 both

enhance target finding for DNA and RNA targets. The acceler-

ation of target binding by AGO2 requires seed complementarity

with its target, which is consistent with pre-organization of the

seed sequence playing a major role in this phenomenon. How-

ever, seed nucleotides do not contribute equally to target bind-

ing; g2–g5 base pairs contribute more to the initial binding of

RISC to target RNA than g6–g8 base pairs, which function

A

B

Figure 6. Argonaute Can Distinguish between miRNA Targets and

Cleaved Products

(A) Effects of additional complementarity and 30 target length on RISC binding

and dissociation. koff was measured directly, correcting for photobleaching,

except for the seed-matched, full-length target, whose dissociation was

slower than the rate of photobleaching and was therefore measured by

varying laser exposure time and extrapolating to no illumination. DDG37�C was

calculated from KD ( = koff / kon); theoretical DDG37�C was predicted using

nearest-neighbor analysis to estimate DG.

(B) Experimentally measured koff, corrected for photobleaching, for let-7a-

guided mouse AGO2-RISC dissociating from the 30 product of a previously

cleaved, 30-tethered, fully complementary target RNA.

See also Figures S5, S6, and S7.
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mainly to slow dissociation of RISC after a successful

encounter with target. The existence of seed subdomains

with distinct binding functions was first predicted from the

structure of human AGO2-RISC bound to a seed-matched

RNA (Schirle et al., 2014).

Because target binding is bimolecular, the rate at which RISC

acquires targets in vivo reflects the concentrations of both target

sites and RISC. In light of recent reports that in vivo target site

concentration is both high and exceeds that of miRNA-guided

RISC (Denzler et al., 2014), the rate of target finding is unlikely

to limit the speed at which miRNAs destabilize their target

mRNAs. In fact, the rates of target binding reported here

approach the speed of macromolecular diffusion, suggesting

that additional proteins such as poly(A) binding protein cannot

promote association of RISC with seed-complementary targets,

as has been suggested (Moretti et al., 2012). Of course, our

studies were conducted with purified components outside of

the cell, and future experiments measuring the rates of RISC

diffusion, and target binding in living cells will be needed to

test these ideas.

In addition to accelerating binding of guides to targets, Argo-

naute proteins alter how quickly target sequences dissociate

from RISC. For mouse AGO2 at 37�C, RISC remains bound to

a typical miRNA-binding site for �5 min. In fact, many miRNA-

guided Argonautes are predicted to bind their target sites with

greater affinity than most known RNA-binding proteins. Conse-

quently, RISC likely serves to recruit and stabilize binding of

proteins such as GW182 or mRNA-degrading nucleases. The

high binding affinity of RISC reflects its slow dissociation rate,

which is far slower than expected for seven base pairs between

RNA strands; the KD of a guide RNA in RISC bound to a

seed-match target is �4 million times tighter and dissociates

�14,000 times slower than for RNA alone.

Many of these properties spring from the unique configuration

of guide nucleotides g2–g8 within Argonaute proteins. Our data

show that the sequence of the seed influences the rate of disso-

ciation, with RISC dissociating from a seed-matched target far

more slowly when guided by let-7a than by miR-21. Moreover,

mismatches in the seed increase the dissociation of RISC

more than would be predicted from the thermodynamics of

base pairing (Figure S6). For example, a g2g3 mismatch

increased koff �3,000-fold, an �6 kcal∙mol�1 increase in free

energy; for RNAs hybridizing in the absence of protein, the pre-

dicted change is just�1 kcal∙mol�1. Together, our data suggest

that Argonautes do more than simply pre-organize the seed,

which would pre-pay the entropic cost of hybridization to a

similar extent for all seed sequences (Figure 7). Argonaute pro-

teins must also provide an environment in which the free energy

of each non-seed base pair is decreased, but the rank order of

base-pairing strength predicted by nearest-neighbor analysis

remains essentially unchanged. Guide positions g9 and g10

are a notable exception to this idea: complementarity to t9 and

t10 can actively destabilize RISC binding. Thus, miRNA predic-

tion algorithms that penalize or at least give no credit for pairing

at nucleotides t9 and t10 are more likely to identify biologically

important mRNA targets.

Intriguingly, mismatches at the 50 end of the seed have the

greatest effect on koff (Figure 3), even when these mismatches

are not predicted to have the greatest effect on base pairing

stability (Figure S6). Thus, even within the seed sequence, Argo-

naute assigns greater value to mismatches before position g5

than from g5–g8. Pairing of g2–g5 with a target appears to

be ‘‘all or none,’’ with both central and terminal dinucleotide

mismatches disrupting binding to a similar extent (Figure S6).

Nucleotides g6–g8 form a second subdomain, and mismatches

in this region increase koff to a far smaller extent. Notably, the

structure of human AGO2-RISC bound to a seed-matched target

suggests that pairing beyond g5 requires a conformational rear-

rangement in the protein (Schirle et al., 2014).

AlthoughmostmiRNA-binding sitesmatch the seedsequence,

some sites use centered pairing,R 11 nt of contiguous comple-

mentarity typically starting at position t4 (Shin et al., 2010).

Although target mismatches with the 50 end of the seed normally

prevent stable miRNA binding, extensive complementarity to the

center and 30 end of a miRNA may compensate. Supporting this

idea, let-7a-RISC binding to a seed-matched target containing a

g4g5:t4t5 mismatch was rescued by additional base pairs 30 to
the seed (Figures 3 and S5). In vivo, miR-21 binds Glutathione

S-transferase Mu 3 mRNA by pairing with nucleotides t5–t16

(Shin et al., 2010).We speculate that the faster-than-typical koff of

the miR-21 seed (Figures 3 and S5) facilitated the evolution of

this site. Because centered sites extend well into the 30 region
of the guide, centered pairing may offset the destabilizing effects

of g9g10 complementarity. Alternatively, the absence of g2–g4

seed pairing may alleviate the conformational strain associated

with g2–g10 complementarity.

The extent of complementarity between guide and target

determines whether RISC simply binds or binds and cleaves.

In animals, miRNAs typically guide binding, whereas siRNAs

usually direct target cleavage. Our data suggest that mamma-

lian AGO2 can discriminate between seed-matched ‘‘miRNA

Figure 7. A Kinetic Model for Mouse AGO2-RISC Function
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targets,’’ to which RISC remains tightly bound, and ‘‘siRNA

targets,’’ with which it pairs more extensively. After target cleav-

age, release of the two cleavage products follows no strict order.

AGO2 creates an environment in which dissociation of either of

the cleavage products accelerates departure of the other prod-

uct. Release of either cleavage product can be rate determining

but is nevertheless faster than would be predicted from the

extent of base pairing with the guide. For the 30 product,

faster-than-expected release can be explained, in part, by the

loss of non-sequence-specific protein-RNA contacts after the

50 product leaves.
TtAgo also senses the type of target to which it is bound.

In vivo, TtAgo catalyzes cleavage of foreign DNA with extensive

complementarity to its 16 nt DNA guide (S.M.J. and P.D.Z., un-

published data; Swarts et al., 2014). Consistent with this idea,

TtAgo dissociated slowly from a fully complementary target

DNA but quickly from a target that was only partially comple-

mentary (t% 1 s at 37�C; Table S1). Unlike mouse AGO2, which

appears to have evolved to bind stably only to RNA, TtAgo

readily binds and cleaves both DNA and RNA. In contrast,

mouse AGO2 finds complementary sites in DNA more rapidly

than RNA but quickly leaves DNA (t % 2 s; Table S1). RNA-

guided human AGO2, but not DNA-guided TtAgo, makes

sequence-independent contacts with both the guide and the

target in the minor groove of the helix formed by seed:target

pairing (Wang et al., 2008a; Schirle et al., 2014). The absence

of minor groove contacts may explain why TtAgo-RISC departs

more rapidly from partially complementary targets than does

human AGO2-RISC.

Unlike ensemble approaches, single-molecule studies

allow direct and continuous observation of rapid events for

both the target and guide. We anticipate that future studies

will extend this approach to other Argonaute proteins, including

the animal-specific PIWI clade, which defends the germline

against transposons, and plant Argonautes, which mediate

both mRNA cleavage (Llave et al., 2002; Tang et al., 2003)

and repression of mRNA translation (Brodersen et al., 2008;

Iwakawa and Tomari, 2013), as well as to more complex sets

of proteins that collaborate with Argonautes to repress gene

expression.

EXPERIMENTAL PROCEDURES

RISC Purification

A duplex siRNA with a 30 Alexa Fluor 555 (Life Technologies) labeled guide

strand was incubated in S100 extract from Ago2�/� mouse embryonic fibro-

blasts overexpressing mouse AGO2 (O’Carroll et al., 2007), and RISC purified

as described (Flores-Jasso et al., 2013). TtAgo was assembled with a 16 nt, 30

Alexa Fluor 555-labeled single-stranded DNA guide.

Single-Molecule Spectroscopy and Data Analysis

Images were collected using a IX81-ZDC2 zero-drift, inverted microscope

(Olympus) equipped with a motorized, multicolor TIRF illuminator, 100W

lasers, and a 1003 high numerical aperture objective maintained at 37�C.
Images were recorded with two EM-CCD cameras (ImagEM, Hamamatsu

Photonics) using a dichroic image splitter (DC2, Photometrics) to separate

fluorescent emission from the two spectrally distinct fluorescent dyes. Acqui-

sition parameters were controlled with Metamorph software (Molecular De-

vices), and image analysis was performed in MATLAB using custom scripts

and a co-localization analysis package developed by the Gelles laboratory

(Friedman and Gelles, 2015). Location of Alexa 647 target molecules (red

channel) and mapping of target locations to the Alexa 555 guide molecules

(green channel) were as described (Crocker and Grier, 1996; Friedman et al.,

2013). On- and off-rates were corrected for non-specific binding to the slide

surface; all dissociation rates were corrected for photobleaching. Global fitting

to a unified kinetic schemewas performed in DynaFit 4 (BioKin; Kuzmic, 1996).

SUPPLEMENTAL INFORMATION
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seven figures, two tables, and four movies and can be found with this article
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