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SUMMARY

Objective: Cortical high-frequency oscillations (HFOs; 100–500 Hz) play a critical role

in the pathogenesis of epilepsy; however, whether they represent a true epileptogenic

process remains largely unknown. HFOs have been recorded in the human cortex but

their network dynamics during the transitional period from interictal to ictal phase

remain largely unknown.We sought to determine the high-frequency network dynam-

ics of these oscillations in patients with epilepsy who were undergoing intracranial

electroencephalographic recording for seizure localization.

Methods: We applied a graph theoretical analysis framework to high-resolution

intracranial electroencephalographic recordings of 24 interictal and 24 seizure periods

to identify the spatiotemporal evolution of community structure of high-frequency

cortical networks at rest and during multiple seizure episodes in patients with intract-

able epilepsy.

Results: Cortical networks at all examined frequencies showed temporally stable com-

munity architecture in all 24 interictal periods. During seizure periods, high-frequency

networks showed a significant breakdown of their community structure, which was

characterized by the emergence of numerous small nodal communities, not limited to

seizure foci and encompassing the entire recorded network. Such network disorgani-

zation was observed on average 225 s before the electrographic seizure onset and

extended on average 190 s after termination of the seizure. Gamma networks were

characterized by stable community dynamics during resting and seizure periods.

Significance: Our findings suggest that the modular breakdown of high-frequency cor-

tical networks represents a distinct functional pathology that underlies epileptogene-

sis and corresponds to a cortical state of highest propensity to generate seizures.

KEY WORDS: High-frequency oscillations, Epileptogenesis, Functional connectome,

Cortical network.

Cortical high-frequency oscillations (HFOs; 100–
500 Hz) have an important physiologic function in cogni-
tion and have been a subject of intense basic and clinical
research in recent years.1–3 Emergence of HFOs prior to
ictal discharges was documented in several in vivo and

in vitro studies.4,5 In contrast to other epileptiform dis-
charges, such as sharp waves or spikes, HFOs are often a
reliable marker of the epileptogenic area,6,7 as resection of
HFO-generating areas has been shown to correlate with
higher rates of seizure freedom than resection of the
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seizure-onset zone alone.6 However, despite their clinical
importance, the basic network dynamics of these oscilla-
tions remain only partially understood. Specifically, it is
unclear how focal HFOs generated in small volumes of
human cortical tissue on the scale of a cortical column2,8,9

can synchronize across large areas of the cortex. The pau-
city of this knowledge, in turn, hinders the development of
novel approaches for monitoring the seizure onset, localiza-
tion of the core epileptogenic network, and advancements
of pharmacologic and/or surgical treatments.

In this study, we sought to identify dynamic transitions in
the topologic structure of the cortical functional connec-
tome at different high-frequency bands using intracranial
electroencephalography (iEEG) recordings in patients with
intractable epilepsy. We defined our data according to dif-
ferent pathophysiologic states, including resting (i.e., inter-
ictal) and seizure (i.e., preictal, ictal, and postictal) states.
We used graph theoretical analysis of cortical activity
recorded by intracranial electrodes to fully characterize net-
work-wide changes of the functional structure underlying
seizure generation. Based on prior studies suggesting likely
distinct cellular and network mechanisms underlying the
generation of high-frequency and gamma oscillations dur-
ing epileptogenesis,10 we examined the spatiotemporal
dynamics of cortical brain networks at gamma (30–80 Hz)
and high-frequency bands, including ripple (80–250 Hz),
fast-ripple (250–500 Hz), and HFO (100–500 Hz) fre-
quency ranges. We hypothesized that the presence of HFOs
in the epileptogenic regions would induce measurable
changes in the architecture of functional brain networks that
precede the onset of seizures.

Methods
Subjects

To estimate the number of resting and seizure periods, we
reviewed a recent study on the spatial localization of
network connectivity within the seizure-onset zone (SOZ)
relative to areas outside the SOZ.11 Using these values, two-
sample t-test calculations indicated that a sample size of a

total of 24 seizure and 24 resting periods would provide
80% power to detect network differences at a 0.01 signifi-
cance level. We selected 24 seizure episodes and corre-
sponding 24 interictal periods in four adult male patients
with medically intractable epilepsy, whose implanted sub-
dural grids were of similar size and location to ensure topo-
logic consistency of recordings and subsequent statistics
across patients (Table S1 and Fig. S1).

All patients underwent chronic, video-monitored subdu-
ral iEEG recordings for localization of SOZs prior to surgi-
cal resection. Eligibility of patients was established based
on extensive preoperative screening criteria, including
medical history, physical examination, scalp EEG record-
ings, and brain imaging (computed tomography [CT], mag-
netic resonance imaging [MRI], and positron emission
tomography [PET]). Based on scalp EEG recordings, neu-
roimaging, and other semiologic characteristics, the seizure
focus in all four patients was localized to the right fronto
temporoparietal region before subdural grid and strip
implantation (Figs. 1A and S1). All patients had complex
partial seizures in addition to secondarily generalized,
tonic, or simple partial seizures (Table S1). In all four
patients, electrographic SOZs were found within the sub-
dural electrode grid (Fig. S1).

All iEEG recordings were collected over a period of
1–2 weeks, during which each patient had at least four sei-
zures. Antiseizure medications were either discontinued or
significantly reduced in dose during chronic recordings.
None of the patients had any other major neurologic (other
than epilepsy) or psychiatric disorders. All but one patient
remained seizure-free.

All patients provided written informed consent for partic-
ipation in the study, which was approved by the institutional
review boards of the Icahn School of Medicine at Mount
Sinai and Thomas Jefferson University.

Data acquisition
All iEEG data were obtained following placement of an

8 9 8 (64 electrodes) subdural grid and strip electrodes
with the center-to-center distance of 10 mm (Integra,
Plainsboro, NJ, U.S.A.). Each electrode had an exposed
surface diameter of 2.5 mm. iEEG time series were
recorded with a sampling rate of 1 kHz per channel (Nihon
Kohden America, Irvine, CA, U.S.A.). All patients under-
went MRI following implantation of the subdural elec-
trodes. Using FreeSurfer 4.1 software, imaging data were
transformed to the standard Montreal Neurological Insti-
tute (MNI) space, and a surface-based co-registration12

with the MNI305 average brain was performed to derive
normalized spatial coordinates for each electrode before
mapping onto a three-dimensional (3D) brain model
(Fig. 1A). The electrodes’ coordinates were then trans-
formed from patient’s native surface space onto the aver-
age pial surface.13 This method allowed concordant
localization across patients.

Key Points
• Dynamics of cortical HFO networks in the preictal
period are drastically different from those observed in
the interictal period

• Cortical HFO networks undergo modular breakdown
before electrographic seizure onset

• Modular breakdown of high-frequency cortical net-
works represents a state of high propensity to generate
seizures and hence a network-wide biomarker of
epileptogenesis
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Data selection and preprocessing
Following the marking of all electrographic seizure-onset

times based on iEEG and simultaneous video recordings in

all patients by an experienced clinical neurophysiologist/
epileptologist (MRS), a total of 24 resting (interictal) and 24
seizure periods, each 10 min in duration, were extracted for

Figure 1.

Spatiotemporal dynamics of cortical network activity during rest and seizure periods. (A) Representation of the subdural grid electrodes

on the cortical surface in the standard Montreal Neurological Institute (MNI) space in each subject (patient) (color-coded). See individual

grid placement map in Figure S1. (B) Representative HFO (100–500 Hz) functional network connectivity depicting 1-s rest and preictal

windows, illustrating rapid changes of functional connectivity before the onset of an electrographic seizure compared to rest in patient 1.

Edge and node color represent normalized mutual information coefficient and strength values (normalized between 0 and 1), respectively.

Similar patterns were seen during other preictal periods across all four patients (Videos S1–S4). The arrow between the rest and preictal

snapshots indicates the direction of time evolution. (C) Temporal dynamics of the mean degree during rest and seizure periods in gamma,

ripple, fast-ripple, and HFO frequency range. Each color represents a patient (corresponding to the grids from PanelA), with shaded areas

indicating standard deviations of mean values. (D) Temporal dynamics of the mean strength during rest and seizure periods showed

increased absolute value and frequency of spiking in mean strength values in all frequency bands.

Epilepsia ILAE
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further processing. All resting periods were chosen with
maximal temporal distance (2–48 h) from a clinical or
electrographic seizure episode in each patient. In addition, a
single 60-min interval (28 min before and 22 min after a
10-min seizure period harboring a 76-s electrographic
seizure) was examined to assess the extended temporal evo-
lution of HFO network dynamics.

The iEEG data from the entire 8 9 8 grid were band-
pass filtered in four frequency bands: 30–80 Hz (gamma
band), 80–250 Hz (ripple band), 250–500 Hz (fast ripple
band), and 100–500 Hz (HFO band). A finite impulse-
response Kaiser filter was used with 30-dB minimal-
frequency attenuation in the stop-band, 30 dB maximal
frequency loss in the pass-band, and 10 Hz lower/upper
transition width.14 All data segments were forward/back-
ward filtered to avoid phase distortions. Although lower
and upper bounds of the filters were narrowed by transition
width partially accounting for attenuation effects around
the Nyquist frequency, the subsequent application of a
high-frequency content detection algorithm before con-
structing functional entropy networks effectively erased
any aliasing artifacts.

Next, ripple, fast ripple, and HFO-band filtered data were
scanned for high-frequency events of interest (HFEoIs)
based on a previously reported computational algorithm for
HFEoI detection.15 This ensured maximal detection sensi-
tivity for each channel’s HFO content to sustain the prepro-
cessing pipeline. The subsequent statistical interaction
analysis quantified the amount of shared high-frequency
information per second between channels. HFEoIs were
selected on the basis of the following steps (algorithmic
details are provided in the Data S1, Supporting Information
and Fig. S6):

1 A threshold was set at one standard deviation above each
channel’s absolute mean signal.

2 A smooth approximate envelope was constructed by cal-
culating the absolute value of the analytic representation
of the thresholded signal and convolving it with a Gaus-
sian kernel. The smoothing step was introduced as a com-
putationally efficient means to merge regions with very
short interevent intervals.

3 The average value of the smooth envelope over nonzero
regions of the thresholded signal was then used to con-
struct a smooth cutoff curve, which ensured that only
events with a sufficient number of peaks above the given
threshold were selected.

4 Signal segments corresponding to nonzero regions of the
smooth cutoff were marked as HFEoI.

Network construction and graph theoretical analysis
Functional connectivity derived from the pair-wise inter-

actions of electrodes in the 8 9 8 grid was quantified by
computing the normalized mutual information (NMI)16

between each pair of preprocessed 1-s long electrode time-

courses. The NMI is a measure of statistical dependence,
which assumes values between zero (statistical indepen-
dence) and one (absolute mutual dependence), allowing for
quantitative comparisons of NMI coefficients across differ-
ent data sets. The calculated NMI values were used to con-
struct matrices so that every second of iEEG data was
represented by a 64 9 64 (8 9 8 grid = 64 electrodes)
NMI matrix. In this manner, 28,800 NMI matrices were
constructed, corresponding to 24 resting and 24 seizure peri-
ods of 10-min each. By interpreting electrodes as nodes and
NMI coefficients as edge-weights, we constructed weighted
undirected graphs with N = 64 nodes. Thus, the computed
NMI networks provided a second-to-second snapshot of
similarities in electrode activity across the entire grid.

The constructed graphs were analyzed using a “bottom-
up” approach by quantifying the temporal patterns of local
metrics of nodal influence (i.e., nodal degree and strength)
followed by estimation of global features of the network
architecture (i.e., average clustering coefficient), and
finally an assessment of community dynamics, which
allowed for detailed delineation and quantification of the
spatiotemporal evolution of the network architecture. To
quantify a single node’s importance within the network, its
degree (i.e., the number of connected edges) and strength
(i.e., the sum of connected edge weights) were computed.
As a first approximation to quantify network segregation,
the global clustering coefficient of each graph was calcu-
lated by averaging local clustering coefficient values,
which were computed as the geometric mean of weights in
triangles around each node in the network.17 Network seg-
regation and integration were assessed by estimating the
graph’s optimal modular decomposition.18 A network’s
optimal modular partition divides the graph into connected
components that show maximal number of within-group
and minimal number of between-group edges. Optimal
modular decompositions of per-second NMI networks were
estimated using the following algorithmic strategy. As the
initial step, each node was assigned a unique module num-
ber, that is, module 1 comprised node 1, module 2 com-
prised node 2, and so on, such that the initial community
affiliation vector was M0 = (1,2,. . .,64). This module
assignment was then used to initialize a community detec-
tion strategy based on the Kernighan-Lin algorithm,19

yielding a refined partition vector M1. Because the under-
lying optimization routine of the employed algorithm was
based on random permutations of nodal group assignments,
the community detection was repeated using M1 as the ini-
tial condition, which resulted in an updated partition vector
M2. Altogether, community detection calculations were
repeated 100 times per network to ensure stability of the
computed partitions. The final community affiliation vec-
tor was obtained by computing the average network parti-
tion across all iterations. Thus, the resulting nodal
community membership was based on how frequently a
node was assigned to the same module. This algorithmic
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strategy was applied to every 1-s NMI network for all rest-
ing and seizure periods.

A linear mixed-effect model analysis20 was performed to
assess the influence of frequency and physiologic state (rest,
preictal, ictal, and postictal states) on network properties
(i.e., degree, strength, clustering coefficient, and module
count). Frequency and pathophysiologic states were entered
as interacting fixed effects into the model. As random
effects, we entered an intercept for patients and a by-patient
random slope for the effect of the pathophysiologic state.
Likelihood ratio tests were used to assess whether the full
model with the pathophysiologic state as main effect was
significantly different from a null model without the effect
at a corrected p ≤ 0.05. Statistical significance of differ-
ences in network properties (i.e., nodal influence, clustering
coefficient, and community structure) between the resting
state and preictal, ictal, and postictal periods across all four
patients was assessed using the fitted models in a many-
to-one Dunnett contrast at p ≤ 0.05 adjusted for multiple
comparisons.21

Modular decompositions were calculated in Matlab
(MathWorks Inc., Natick, MA, U.S.A.) using the Brain
Connectivity Toolbox.22 Statistical analysis of network
properties was performed in R.23

Results
A likelihood ratio test of the constructed linear mixed

effect models showed that temporal variations of network
structure were related to pathophysiologic states (all cor-
rected p ≤ 0.0052).

The temporal evolution of nodal degrees within the
gamma, ripple, fast-ripple, and HFO networks was charac-
terized by stable resting-state (i.e., interictal) connectivity
patterns (Fig. 1B, videos S1–S4). However, these patterns
were significantly disrupted along the entire time course of
seizure periods (Fig. 1B, videos S1–S4). Specifically, dur-
ing seizures, high-frequency (ripple, fast ripple, and HFO)
networks were characterized by distinct decreases in nodal
degree (i.e., the number of connections) (all corrected
p ≤ 0.006), whereas gamma-band networks did not show
statistically significant differences in degree values
between seizure and resting periods (all corrected p ≥ 0.9)
(Table 1; Fig. 1C). Similarly, high-frequency networks but
not gamma band networks exhibited significant increases
in nodal strength (i.e., connection weights) during seizure
periods as compared to the resting periods (all high-fre-
quency networks vs. rest at a corrected p ≤ 0.003; gamma
network vs. rest at a corrected p ≥ 0.8) (Table 1; Fig. 1D).

To estimate dynamical changes in network segregation,
we assessed the temporal evolution of global clustering
coefficients during seizure periods as compared to resting
values. Before the onset of an electrographic seizure, preic-
tal high-frequency networks (including ripple, fast ripple,
and HFO networks) showed statistically significant differ-
ences in clustering coefficient compared to the resting state
(all corrected p ≤ 0.03, Table 1). On the other hand, gamma
networks exhibited pronounced increases in global cluster-
ing only during the ictal period (corrected p = 0.01)
(Table 1). No statistical differences in clustering coefficient
were found between resting state and the postictal periods at
any frequency band (p ≥ 0.3).

Table 1. Cortical network properties during resting and seizure periods

Frequency band Network metric

Pathophysiologic state

Rest Preictal p-Value Ictal p-Value Postictal p-Value

Gamma Degree 21.7 � 7.4 22.8 � 10.3 1.0 22.5 � 10.2 1.0 23.6 � 10.0 0.9

Strength 3.0 � 1.0 3.3 � 1.5 0.9 3.1 � 1.3 1.0 3.5 � 1.6 0.8

Clustering 0.1 � 0.03 0.1 � 0.02 0.9 0.13 � 0.04* 0.01* 0.11 � 0.03 0.9

Module no. 5.8 � 1.0 5.6 � 0.9 1.0 5.7 � 0.9 0.9 5.7 � 0.8 1.0

Ripple Degree 62.1 � 1.6 45.1 � 9.8* 0.004* 44.9 � 9.8* 0.005* 44.8 � 9.7* 0.005*

Strength 5.4 � 1.2 3.5 � 1.2 * 0.0001* 3.4 � 1.2 * 0.0002* 3.6 � 1.1* 0.0003*

Clustering 0.08 � 0.02 0.06 � 0.02* 0.02* 0.08 � 0.02 1.0 0.06 � 0.03 0.4

Module no. 5.9 � 1.3 16.1 � 6.6 * 0.03* 13.8 � 9.3 0.08 19.4 � 13.7 0.07

Fast ripple Degree 62.4 � 1.2 43.6 � 15.1* 0.002* 42.6 � 16.3* 0.002* 43.6 � 15.2* 0.003*

Strength 5.6 � 0.7 2.9 � 1.1* 0.0001* 2.7 � 1.2* 0.0001* 3.0 � 1.2* 0.0001*

Clustering 0.09 � 0.01 0.05 � 0.02* 0.001* 0.08 � 0.03 0.9 0.06 � 0.03 0.3

Module no. 4.3 � 1.0 17.4 � 12.0* 0.01* 11.7 � 4.1 0.09 14.3 � 6.6 0.2

HFO Degree 62.4 � 1.2 45.2 � 10.7* 0.004* 44.7 � 10.7* 0.004* 44.8 � 10.5* 0.005*

Strength 5.3 � 1.2 3.2 � 1.0* 0.0001* 3.0 � 0.8* 0.0001* 3.3 � 0.9* 0.0001*

Clustering 0.08 � 0.02 0.05 � 0.02* 0.008* 0.08 � 0.03 0.9 0.06 � 0.03 0.4

Module no. 5.4 � 1.1 16.2 � 7.3* 0.03* 12.9 � 7.4 0.09 18.0 � 12.2 0.09

All values were averaged across patients and the respective temporal segments during rest, preictal, ictal, and postictal periods. The average values (mean �
standard deviation) of the degree (average number of connections in the network), strength (sum of connected edge weights averaged across the network), global
clustering coefficient (average local clustering coefficient), and module count are shown for each physiologic state.

Asterisk (*) indicates statistically significant differences in network measures compared to resting values across all four patients at p ≤ 0.05 (corrected for multi-
ple comparisons using a Dunnett contrast).
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To further quantify these pathologic alterations in net-
work architecture during the transition from rest to preictal
to ictal and postictal periods, we used the concept of net-
work modules, that is, the formation of nodal communities
based on their shared activity (see Methods). During the
resting state, networks at all frequency bands were charac-
terized by a stable modular structure, with an average num-
ber of modules ranging from 3.3 to 7.2 (Table 1). Gamma
networks retained the community structure of the resting
state through the entire length of a seizure period (Fig. 2)
and did not show significant changes in the number of mod-
ules between resting and seizure periods (corrected p = 1.0)
(Table 1). Conversely, significantly irregular partitioning
of the network architecture with an increased average num-
ber of modules (ranging from 22.7 to 29.4) during the preic-
tal period was observed across all high-frequency networks,

including ripple, fast-ripple, and HFO networks (all
corrected p ≤ 0.03) (Table 1). This effect was associated
with an increased migration of nodes between modules in
the high frequency band over the entire time course of a
seizure (number of modules transitioned by each node
during rest vs. seizure period in the ripple band: 13.9 � 1.9
vs. 33.4 � 6.6; fast ripple band: 8.6 � 1.6 vs. 23.6 � 5.2;
HFO: 12.0 � 1.8 vs. 34.1 � 7.3) (Table 2, Figs. 3A,B
and S5).

As a result, in the high frequency bands, the highest num-
ber of modules was formed during the pre- and postictal
periods and the lowest number of modules was formed dur-
ing the ictal periods (Table 1, Fig. 3C,D). The fragmenta-
tion of the network into numerous small modules ultimately
resulted in a breakdown of its architecture. This modular
breakdown was seen on average 225 s before the

Figure 2.

Functional cortical network architecture at different frequency bands at rest and during a seizure period. The spatiotemporal evolution of

the modular structure of functional cortical networks in gamma, ripple, fast-ripple, and HFO frequency bands in patient 1 during 600-s-

long rest (left column) and seizure periods (right column). Each node is assigned a number in the left vertical axis, and each community of

nodes is represented by a color. Starting with electrode 1 at the top, all the nodes in a network are shown as a column of pixels. The

dimension of each network is N = 64, hence each column is 64 pixels long with each pixel shaded using a 6-bit (26 = 64) color palette,

representing the maximal possible number of modules. In this manner, all networks are represented by 6-bit pixel columns, which are

stacked against each other, starting from the left and advancing in one-second steps in the time dimension to 600. Red vertical lines mark

the electrographic seizure onset; yellow vertical lines highlight the end of the ictal period. The overlaid white curves demonstrate the

stable temporal evolution of the number of network modules (right axes) during the resting periods in all frequency bands, but their

significant deviations from resting period values during a seizure period in all high-frequency bands. Similar patterns were observed in all

other patients.

Epilepsia ILAE
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electrographic seizure onset (ripple band: 241.5 � 114.0 s;
fast ripple band: 166.5 � 124.5 s; HFO band:
225.0 � 106.5 s) and 190 s after the termination of sei-
zures (ripple band: 175.0 � 121.5 s; fast ripple band:
193.5 � 105.0 s; HFO band: 190.5 � 114.0 s) (Table 2).

Ripple and fast ripple networks showed competing com-
munity patterns during seizure periods; modular disorgani-
zation was observed in either the ripple or fast ripple band
but not in both simultaneously, whereas HFO networks
exhibited an abnormal architecture that combined features
of both ripple and fast-ripple networks (Fig. 2). The three
salient phases of the seizure period—preictal, ictal, and pos-
tictal periods—undergo similar patterns of modular disorga-
nization (increase in number of modules and decrease in
module size, Figs. 4A,B and S2–S4) despite their widely
contrasting electrographic patterns shown in the unfiltered
16-channel iEEG (Fig. 4C). Taken together, these results
point to pronounced variations in nodal connectivity pat-
terns (i.e., NMI coefficient values) that initiate before elec-
trographic seizure onset and is suggestive of the existence
of a state of high ictogenic potential.

Analysis of an extended segment of iEEG that included
the spatiotemporal evolution of the modular structure of
HFO network from resting to seizure to resting periods
showed the emergence of a highly dynamic state of modular

disorganization, that was characterized by numerous small
modules more than 3 min prior to the electrographic seizure
onset (Fig. 4D, middle row). This state was surrounded on
each side by presumably resting-like periods with stable
modular patterns (reminiscent of the resting period net-
works in Fig. 2) before and after the seizure period
(Fig. 4D, top and bottom panels).

Discussion
In this study, we used iEEG recordings in patients with

intractable epilepsy to demonstrate unique changes in the
modular organization of high-frequency cortical networks
prior to electrographic seizure onset. Abnormalities in the
number and strength of network connections led to patho-
logic segregation of the entire recorded network during the
preictal state on average 225 s before the electrographic sei-
zure onset, which led to the breakdown of the modular net-
work structure across the entire seizure period and extended
on average 190 s into the postictal period (Table 2). Fur-
thermore, this modular breakdown was not limited to sei-
zure focus alone but rather engulfed larger neocortical areas
(within the confines of the subdural grid), likely represent-
ing a dynamic state with heightened ictogenic potential
facilitating seizure initiation and spread.24

Table 2. Gamma and high-frequencymodular dynamics of cortical networks during seizure periods

Frequency band patient no.

Modular characteristics

No. of modules transitioned by a node Timing of modular breakdown (s)

Rest Seizure period Before seizure After seizure

Gamma 1 17.1 � 0.4 14.3 � 0.9 n/a n/a

2 13.6 � 2.1 12.6 � 1.6 n/a n/a

3 17.7 � 2.1 17.0 � 2.2 n/a n/a

4 11.4 � 5.8 12.7 � 1.5 n/a n/a

Mean � SD 15.0 � 3.0 10.9 � 6.7 n/a n/a

Ripple 1 11.3 � 2.6 58.0 � 4.1 222 � 72 294 � 66

2 15.9 � 4.1 19.1 � 1.5 246 � 96 192 � 132

3 14.3 � 2.1 29.2 � 11.6 234 � 114 126 � 144

4 14.1 � 1.2 27.2 � 9.0 264 � 174 90 � 144

Mean � SD 13.9 � 1.9 33.4 � 6.6 241.5 � 114.0 175.0 � 121.5

Fast ripple 1 4.9 � 2.0 23.3 � 5.9 72 � 126 222 � 60

2 9.4 � 1.4 17.7 � 2.8 174 � 144 234 � 108

3 8.3 � 1.2 17.5 � 7.8 90 � 126 126 � 126

4 11.6 � 1.8 35.7 � 4.4 330 � 102 192 � 126

Mean � SD 8.6 � 1.6 23.6 � 5.2 166.5 � 124.5 193.5 � 105.0

HFO 1 8.1 � 1.1 59.3 � 4.6 222 � 72 294 � 66

2 14.4 � 2.9 18.9 � 1.4 222 � 126 210 � 108

3 12.4 � 2.4 25.7 � 12.1 138 � 120 126 � 144

4 13.1 � 0.8 32.3 � 11.1 318 � 108 132 � 138

Mean � SD 12.0 � 1.8 34.1 � 7.3 225.0 � 106.5 190.5 � 114.0

The hallmark of modular breakdown is rapid transitions in modular affiliation of each node. The number of modules transitioned by each node at each frequency
band during resting and seizure periods is shown as mean � standard deviation in each patient, with the group mean � standard deviation values shown in bold.
Note the increase in the number of modules transitioned by each node during the seizure period compared to resting period in all high frequency bands. The mod-
ular breakdown precedes all electrographic seizure onsets in all patients and persists for several minutes after electrographic seizure termination. Modular break-
down was defined as a statistically significant increase in the number of network modules above the group-averaged resting values for each frequency band given in
Table 1. SD, standard deviation; n/a, not applicable.
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Figure 3.

Modular disorganization of functional HFO networks during seizure periods leads to the emergence of numerous small functional com-

munities. (A, B) The horizontal axis represents the total number of network modules emerging during a rest (A) and seizure period (B)

in patient 1 (same periods as shown in Figs. 2 and 4) with the length of each line segment indicating the corresponding module size.

Color-coded arcs mark the peculiar dynamics of the modular affiliation of each node with the line color indicating the target module. At

rest, three dominant modules comprised the network; however, during the seizure period, numerous small modules fragmented the

HFO networks (i.e., modular breakdown). Similar patterns were observed in all other patients (Fig. S5). (C) Temporal evolution of the

module count in HFO networks across all analyzed rest and seizure periods (1–24). Raw unsmoothed data is shown as relief contour in

the left vertical plane. (D) Representation of module count averaged across all functional HFO networks during all 24 resting and 24 sei-

zure periods (rest, preictal, ictal, and postictal phases), color-coded for each patient. Dashed lines show the mean module count averaged

across all recordings and patients, with vertical error bars representing standard deviations (Table 1).

Epilepsia ILAE

Figure 4.

Preictal, ictal, and postictal functional HFO networks undergo similar patterns of modular breakdown despite widely contrasting electro-

graphic patterns. (A) The spatiotemporal evolution of modules in functional HFO networks at rest (left column) and during a seizure per-

iod (right column) in patient 1. Each row corresponds to a node (1–64), and each column represents the whole network at a specific time

point. Nodes within the same community share the same color. Red vertical lines mark the electrographic seizure onset; yellow vertical

lines highlight the end of the ictal period. The overlaid white curves demonstrate the stable temporal evolution of the number of network

modules (right axes) during the resting period but their significant deviations from resting period values over the time course of a seizure

period. (B) Spatiotemporal evolution of module size in functional HFO networks in the same patient during the same resting and seizure

periods. Each color represents a module with the vertical extension of each shaded area indicating its size (the current number of nodes

in that module). The overlaid white curve shows the mean (averaged across the network) module size (right axis). The resting state is

characterized by the prevalence of a few large modules that will subsequently fragment into numerous small modules during the seizure

period. (C) The corresponding unfiltered 16-channel iEEG segment (electrode 32–48) illustrates a short preictal period followed by ictal
onset and termination (red and yellow lines) and a short postictal period (color-coded based on modular affiliations of the corresponding

nodes in the functional HFO networks). Note the widely different electrographic patterns of cortical activity before the seizure onset

(segment before the red line), during the electrographic seizure (segment between the red and yellow line), and after seizure termination

(segment after the yellow line), and yet their similar modular pattern as illustrated inA and B (increase in module count and correspond-

ing decrease in module size compared to resting period values) (Table 1). Similar patterns were observed in all other patients during rest

and seizure periods (Figs. S2–S4). (D) A 42-min segment of iEEG was analyzed to show the continuous spatiotemporal evolution of the

modular structure from its resting pattern, throughout an entire seizure period and its return to the resting pattern in patient 1. The

overlaid white curves demonstrate the stable temporal evolution of the number of network modules (right axes) during the resting (inter-

ictal) period (upper and lower panels) but their significant deviations from resting period values throughout the time course of the pre-

ictal, ictal, and postictal periods collectivley represented as seizure period (middle panel). To account for the extended time interval,

HFEoI detection was performed using a moving average/standard deviation with a window size of 1 min.

Epilepsia ILAE
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One of the prominent features of the pre- and postictal
periods was spatiotemporally rapid de- and resynchroniza-
tion of high-frequency cortical activity, which caused con-
tinuously changing modular affiliations of nodes and
modular instability in the high-frequency networks. In con-
trast, increased synchrony at ictal onset led to a sudden spike
in the connectivity profile (degree/strength) of nodes, which
formed a few large but highly unstable modules. Such a
rapid buildup and breakdown of network synchronization

among nodal communities was not observed during the rest-
ing period in any frequency band. Taken together, our data
indicate that aberrant topology and modular breakdown of
high-frequency networks are a hallmark of an epileptic sei-
zure, evolving before its electrographic onset and undergo-
ing gradual normalization of network architecture in the
postictal period.

When examining different frequency bands within the
high-frequency spectrum, we found that ripple or fast-ripple
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networks shaped the HFO network community structure,
and as such, the paroxysmal modular breakdown character-
istic of HFO networks during seizure periods did not seem
to be balanced between the ripple and fast ripple compo-
nents. This suggests that HFO networks represented an
amalgamation of ripple and fast-ripple networks, reflecting
the dynamic network changes of both frequency bands.
Taken together, these findings underscore the importance of
analyzing the functional connectome of seizures in a broad
band (ripple and fast ripple) high-frequency spectrum.

Although the cellular and synaptic mechanisms of HFO
remain partially understood, it has been shown that corre-
lated neuronal activity through the activation of axonal
plexus may underlie the generation of HFOs25,26 recorded
across relatively large areas of cortex. These high-frequency
local field potentials (LFPs) are generated primarily as
HFOs in the principal cell axonal plexus,4,27,28 may mani-
fest as spikelets and full or partial spikes in the soma of prin-
cipal cells4,5,9,25 and lead to highly synchronized high-
frequency band activity in cortical sites that are often tens of
millimeters apart from each other.9,29,30 Nonsynaptic (gap
junctional) mechanisms have been proposed as a potential
process underlying the propagation of spikes (a term more
akin to a partial or complete axonal action potential and dif-
ferent from the term used in clinical epilepsy, e.g., interictal
spikes) among sparsely connected cortical principal neurons
at a specific subcellular compartment, that is, axons that
give rise to coherent oscillations in principal cell axonal
plexus.4,31,32 An axonal plexus formed by strong yet sparse
(with the network connectivity above the percolation thresh-
old) electrical coupling via gap junctions has been shown to
shape the random, unstructured spontaneous activity of the
plexus into coherent and self-organized oscillations under
certain conditions.31,32 In fact, the frequency of such oscilla-
tions does not depend on intrinsic properties of the principal
cells, or the network size (if sufficiently large), but mainly
on the rate of axonal spontaneous activity and the topology
of the network.31–33 In line with these earlier findings, our
current iEEG-based data demonstrated significant local and
global abnormalities of high-frequency networks, which
were not confined to the seizure foci but spread and encom-
passed the larger recorded network. As shown in other stud-
ies, synchronization across such large areas of cortex is
unlikely to be orchestrated by multiple LFP sources gener-
ated by uncorrelated synaptic activity or local field
effects.34 In support of this, we have shown that pathologic
HFO networks have similar breakdown patterns across mul-
tiple seizure types (complex partial, generalized tonic–clo-
nic, and secondarily generalized tonic–clonic) and
therefore, likely manifest a common underlying epilepto-
genic process.

This nonsynaptic mechanism is distinctly different from
other well-described modes of generation of oscillatory
activity, where intrinsic oscillatory dynamics of individual
neurons coupled by gap junctions organize coherent

oscillations, such as gamma oscillations.35 In our study,
gamma networks showed elevated average clustering coef-
ficients during the ictal period only as compared to the rest-
ing period, which supports the notion of increased local
synchronization shown by other investigators.36 However,
the modular decomposition of gamma networks was charac-
terized by a transient change in community structure only
during the ictal but not in the pre- or postictal periods. In
other words, gamma networks exhibited changes in their
modular structures only after the full manifestation of the
epileptogenic process (i.e., only during the ictus) and not in
the preictal period.

Furthermore, the HFO network dynamics were found
to be significantly different from the gamma network
dynamics during the seizure period, which is suggestive
of the fundamental differences in the generation of these
two oscillations at the cellular and network levels. In
contrast to gamma oscillations, the cellular mechanisms
underlying HFOs do not involve chemical synaptic
transmission, as its blockage among excitatory and inhi-
bitory cortical neurons eliminates all epileptiform dis-
charges (e.g., sharp waves and spikes), except HFO.4,26

More specifically, neither reduction nor complete block-
ade of c-aminobutyric acid (GABA)ergic synaptic trans-
mission affects HFO. Similarly, HFOs persist under
conditions of near complete elimination of interneuron
gap junctions in connexin36-knockout mice, while
gamma oscillations dramatically decrease.37 It is, there-
fore, plausible that gamma and HFO networks play dis-
tinct roles in epileptogenesis.

We found that modular disorganization of HFO networks
precedes electrographic seizures and persists through the
ictal and postictal periods. This modular disorganization is
based on cortical HFOs that are mostly if not exclusively
generated through nonsynaptic mechanisms between corti-
cal principal neurons and therefore are independent of
synaptic mechanisms driving the observed electrographic
seizure activity such as spikes, sharp waves, and most if not
all the slow and fast cortical oscillatory activity up to and
including the gamma oscillations. In this sense, the spa-
tiotemporal maps of HFO networks as shown in this study
may be regarded as nonsynaptic biomarkers of ictogenesis
that drive a network of cortical neurons connected via
chemical synapses, ultimately generating epileptic seizure
activity.

Our statistically significant findings demonstrate abnor-
mal local nodal community structure and modular break-
down of high-frequency networks across all seizure events,
which is consistent with the epileptogenic potential of HFOs
independent of the clinical seizure presentation.1 As such,
pathologic HFO network dynamics are likely to play a
prominent role in human epileptogenesis. Therefore, mea-
sures of HFO network dynamics in contrast to single chan-
nel pathologic HFO38,39 have a high potential in facilitating
the development of novel biomarkers for epileptogenesis.
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Future studies should take advantage of this specific net-
work marker for temporal prediction of seizures and possi-
ble intervention via a closed loop (e.g., responsive)
stimulation. Taken together, our study provides strong
experimental evidence for the crucial role of high-frequency
network oscillations in the transition from an interictal to a
preictal state where further evolution to an ictal state may be
inevitable.
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Supporting Information
Additional Supporting Information may be found in the

online version of this article:
Figure S1. 3D reconstruction of intracranial (subdural)

grid and strip electrode placement maps in all patients.
Figure S2. Functional cortical network structure at dif-

ferent frequency bands during rest and seizure periods for
patient 2.

Figure S3. Functional cortical network structure at dif-
ferent frequency bands during rest and seizure periods for
patient 3.

Figure S4. Functional cortical network structure at dif-
ferent frequency bands during rest and seizure periods for
patient 4.

Figure S5. Modular affiliation dynamics in functional
HFO networks at rest and during seizure periods.

Figure S6. Community maps based on Burnos HFEoI
detection.

Video S1. Spatiotemporal evolution of functional HFO
(100–500 Hz) networks during a representative resting
(left) and seizure period (right) in patient 1.

Video S2. Spatiotemporal evolution of functional HFO
(100–500 Hz) networks during a representative resting
(left) and seizure period (right) in patient 2.

Video S3. Spatiotemporal evolution of functional HFO
(100–500 Hz) networks during a representative resting
(left) and seizure period (right) in patient 3.

Video S4. Spatiotemporal evolution of functional HFO
(100–500 Hz) networks during a representative resting
(left) and seizure period (right) in patient 4.

Table S1. Clinicopathologic characteristics of patients
with drug-resistant epilepsy.
Data S1.Methods.
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