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SUMMARY

In Caenorhabditis elegans, the fates of the multipotent
vulval precursor cells (VPCs) are specified by intercellular
signals. The VPCs divide in the third larval stage (L3) of
the wild type, producing progeny of determined cell types.
Inlin-28 mutants, vulva development issimilar towild-type
vulva development except that it occur sprecociously, in the
second larval stage (L2). Consequently, when lin-28 her-
maphrodites temporarily arrest development at the end of
L2 in the dauer larva stage, they have partially developed

vulvae consisting of VPC progeny. During post-dauer
development, these otherwise determined VPC progeny
become reprogrammed back to the multipotent, signal-
sensitive state of VPCs. Our resultsindicate that VPC fate
determination by intercellular signals is reversible by
dauer larva developmental arrest and post-dauer develop-
ment.

Key words: dauer larva, vulva, determination, heterochronic genes

INTRODUCTION

Multicellular development involves numerous regulatory
events whereby multipotent cells adopt specific fates. The
precise mechanisms by which cells are endowed with adefined
set of potential fates, and the regulatory steps by which those
cells are directed toward a particular differentiated fate, are not
well understood. A multipotent cell that responds to intercel-
lular signals can become irreversibly determined by those
signals, such that its fate is unaltered by subsequent experi-
mental manipulation of its environment (Slack, 1983).
However, since it is not always possible to exert complete
control of a cell’s environment, cells that appear determined
with respect to a particular developmental signal could harbor
cryptic potentiality that would be reveaed if the cell were
placed in a different temporal and/or spatial context. Under-
standing the mechanisms of cell fate determination in multi-
potent cells requires characterization of all the regulatory steps
leading from a multipotent, undetermined state, through the
transduction and implementation of developmenta signals,
and finally to the differentiation of specific cell types. Theiden-
tification of reversible steps in the process of cell fate restric-
tion would reveal intermediate regulatory steps between mul-
tipotency and terminal differentiation.

Vulval development in C. elegansis an excellent system for
the analysis of signal transduction, cell fate determination and
differentiation. The six vulval precursor cells (VPCs) are born
inthefirst larval stage (L1) and divide approximately 20 hours
later at a precise time in the L3 stage (Fig. 1A). All six VPCs
have the potential to express any one of three different fates,

defined by the number and type of progeny that they eventu-
ally produce. The fate of a VPC depends on intercellular
signals, including a gonadal inductive signal (Sulston and
White, 1980; Kimble, 1981), an inhibitory signal from the sur-
rounding hypodermis (Herman and Hedgecock, 1990) and a
lateral signa from neighboring VPCs (Sternberg, 1988;
Sternberg and Horvitz, 1989). The VPCs implement these
signals and adopt a specific vulval fate at approximately the L2
molt and early L3 (Sternberg and Horvitz, 1986; Greenwald et
al., 1983; Ferguson et al., 1987). The daughters of the VPCs
appear to be irreversibly determined with respect to the posi-
tional signals that influenced their parents (Sternberg and
Horvitz, 1986; Horvitz and Sternberg, 1991; Herman and
Hedgecock, 1990; Hill and Sternberg, 1992; Greenwald et al.,
1983).

The heterochronic gene pathway controls the time of the
VPC divisions by regulating the timing of their G1/S transition
(Euling and Ambros, 1996). In loss-of-function lin-14 or lin-
28 mutants, VPCs divide precociously, in the L2 stage,
resulting in early but otherwise essentially normal patterns of
vulva cell division (Ambros and Horvitz, 1984; Euling and
Ambros, 1996). Heterochronic mutations do not significantly
affect the spatial patterning of vulval fates, but ater the
temporal expression of those fates. Thus, it appears that the
heterochronic gene pathway acts independently of the spatial
patterning signals to control when VPCs are competent to
select a fate, divide and produce specialized vulva cells
(Euling and Ambros, 1996).

The fact that mutations in heterochronic genes cause preco-
cious vulval cell division alowed us to examine the behavior
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Fig. 1. Ventral hypodermal cell lineages during continuous devel opment. Cell lineages were observed using Nomarski optics at 20°C. Shaded
boxes represent time in lethargus, the end of which is defined as the time when pharyngeal pumping resumed. Thetime scaleis hours at 20°C,
beginning at hatching. Brackets indicate cells that adopted vulval fates. (No cell divisions are shown for the anterior daughters of the P cells,
which are neuroblasts). 1°, 2° and 3° vulval fates are characterized by the pattern, number, orientation of cell divisions and morphogenetic
behavior of the progeny cells (Sulston and White, 1980; Sternberg and Horvitz, 1986). L, longitudinal division plane; T, transverse division
plane; N, no division (Sternberg and Horvitz, 1986). In the wild type, T and N cells participate in vulval morphogenesis whereasthe L cells
adhere to the ventral cuticle. (A) Wild-type P3-P8 cell lineages during continuous development (from Sulston and Horvitz, 1977). (B) P3-P8
cell lineages of a continuously developing lin-28(n719) mutant animal (Euling and Ambros, 1996). The rate of development of 1in-28(n719)
animalsis somewhat slower than in wild type. Polarity reversals of P5.p or P7.p cell lineages frequently occur in lin-28(If) animals: Among lin-
28(n719) animals analyzed by cell lineage analysis (n=15) or by examining vulval anatomy (n=21), 19/36 exhibited a polarity reversal of P7.p,
2/36 exhibited a polarity reversal of P5.p, and 4/36 exhibited incomplete induction of P7.p (our results and W. Katz, personal communication).
None of the VPCs in these animals exhibited greater than three rounds of cell division. In 10 1in-28(n719) animals at the fina molt, 62/70
daughters of L divisions appeared to adhere normally to the ventral cuticle, and all products of P3.p, P4.p, and P8.p appeared to join the

syncytium in these 1in-28(n719) animals, asin the wild type.

of otherwise determined VPC progeny cells in a novel
temporal context, the dauer larva and post-dauer developmen-
tal pathway. The dauer larvais an aternative, developmentally
arrested third larval stage formed under poor growth conditions
(Golden and Riddle, 1984). Since wild-type dauer larvae arrest
development at the end of the L2, all of their VPCs are
undivided. However, in lin-28 mutants, precocious vulval
development is underway precisely when dauer larva devel op-
mental arrest occurs and, therefore, the mutant dauer larvae
contain partially developed vulvae. The presence of VPC
progeny cellsin the lin-28 dauer larvae offered the opportunity
to explore the effects of temporary developmental arrest on the
process of vulval cell fate determination.

The effects of developmenta arrest and post-dauer devel-
opment on the fates of precociously formed vulval cells is of
interest for two principa reasons: First, a post-dauer repro-
gramming of vulval cells would suggest areversibility of steps
in cell fate commitment in response to the intercellular vulval
patterning signals. In this paper, we demonstrate that when
VPC daughter and granddaughter cells develop through the
dauer pathway, they revert to a state of tripotency and signal-
sensitivity indistinguishable from that of norma VPCs.
Second, devel opment through the dauer larva stage correctsthe
temporal mis-specification of lateral hypodermal cellsin hete-
rochronic mutants (Liu and Ambros, 1991). A similar repro-
gramming of vulval (ventral hypodermal) cell fates would
suggest that there is atemporal reprogramming activity for the

entire hypodermis of dauer larvae, and perhaps also for other
cell lineages. Our results suggest that (1) the regulatory
changes that distinguish multipotent VPCs from their
daughters and granddaughters are reversible by dauer larva
developmental arrest and that (2) aregulatory mechanism asso-
ciated with the dauer larva sets vulval cells to the proper
temporal state for post-dauer development.

MATERIALS AND METHODS

Nematode culture

C. elegans strains were grown and maintained as described by
Brenner (1974) and Wood (1988). All experiments were performed
at 20°C unless otherwise noted.

C. elegans strains

The wild-type strain used was C. elegans var. Bristol strain N2.
Mutant alleles are as described (Brenner, 1974; Wood, 1988; Ambros
and Horvitz, 1984; Ambros and Horvitz, 1987) unless otherwise
noted. Strains used are: MT1035 lin-12(n137sd n460ts), MT1397 lin-
14(n179ts), MT2015 lin-28(n947), MT3232 lin-10(n1390) (Kim and
Horvitz, 1990), MT3639 unc-13(el091am) lin-11(n566), MT5788
nls2 (lin-11::lac-Z), MT5875 1in-28(n947); nis2 (lin-11::lacZ),
VT297 lin-28(n719), VT592 lin-10(n1390) lin-28(n719), VT757 lin-
28(n719); 1in-12(n137sd n460ts).

Dauer larva isolation
Dauer larva formation was induced as described (Golden and Riddle,



1984), and dauer larvae were selected by detergent treatment (Golden
and Riddle, 1984) and/or morphological criteria (Singh and Sulston,
1978). Dauer pheromone was prepared as described (Golden and
Riddle, 1984) with modifications from C. Bargmann (personal com-
munication) and H. Tissenbaum (personal communication).

Cell lineage analysis

Vulval cell lineages were followed using Nomarski optics as
described (Sulston and Horvitz, 1977). Cdll lineage nomenclature is
as described (Sulston and Horvitz, 1977; Sternberg and Horvitz,
1986). Pn.px denotes a daughter of a Pn.p cell, where ‘x’ refers to
either the posterior or anterior daughter of P3.p-P8.p; similarly,
Pn.pxx and Pn.pxxx are granddaughter and great-granddaughters,
respectively, of P3.p-P8.p (Fig. 2). Lineal designations (e.g., Pn.px)
do not necessarily imply other aspects of cell identity, such as cell
type or state of determination or differentiation. For technical reasons,
cell lineages were not followed directly as animals entered the dauer
larva stage, so the pre-dauer vulval cell lineage history was inferred
by anatomical analysis. Individual dauer larvae were observed using
Nomarski optics. The likely cell lineage history of each vulval cell
nucleus was determined from its size and position relative to the
gonad, other ventral hypodermal nuclei and ventral nerve cord nuclei.
Undivided VPCs were recognized by their relatively large and well-
separated nuclei. Cellsrelated by division of acommon ancestor were
identified by the relatively small size and more closely grouped
placement of their nuclei. One or more precocious VPC divisions
were observed to have occurred prior to dauer larva arrest in approx-
imately 45% (n=96) of 1in-28(If) dauer larvae. Occasionaly, the
lineage history of some cells was ambiguous, particularly when a
group of three similarly sized nuclei were judged to be descendants
of one VPC, but their precise lineage could not be deduced.

Temperature-shift experiments

[in-28(n719); 1in-12(n137sd n460ts) hermaphrodites were grown at
20°C, and eggs were collected, placed at 15°C or 25°C until the L1
molt or until a defined time thereafter, picked individually and
examined by Nomarski optics at 20°C to confirm the animal’s devel-
opmental stage and to determine if VPC cells had divided. Each
animal was then immediately placed on culture plates at the alterna-
tive temperature. Developmental stage was determined by examining
animals for molting behavior and the extent of gonad development.
These manipulations at 20°C took less than 5 minutes. Each temper-
ature-shifted animal (and control animals maintained on the original
stock plates) were examined at the L3 and/or L4 stages using
Nomarski optics; the multivulva (muv) phenotype was scored based
on the number of VVPCs whose progeny exhibited vulval morphogen-
esis (see legend to Table 2).

Laser microsurgery

Laser microsurgery was performed as described (Sulston and White,
1980; Avery and Horvitz, 1987), and the operated and mock-operated
animals were transferred to food to allow further development. Since
it was difficult to identify the anchor cell in dauer larvae, approxi-
mately four cells in the mid-region of the somatic gonad were killed
and successful destruction of the anchor cell was confirmed later using
Nomarski optics. In 1in-28(n719) hatchlings, the entire 4-cell gonadal
primordium was ablated. The operated and mock-operated hatchlings
were grown in microtiter wells with dauer pheromone and an excess
of unoperated, phenotypically distinguishable, unc-13 lin-11 animals
at 25°C in order to promote efficient dauer larvae formation.

lin-11::lacZ expression

Dauer larvae were selected as described above, placed in a drop of
M9 on amicroscope slide, covered with a coverdip and frozen on dry
ice for 10 minutes. The coverslip was then removed and the animals
were fixed in acetone and incubated overnight with 0.1% Xgal (Fire
et a., 1990), and 1 pg/ml DAPI (Wood, 1988). Animals were
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Fig. 2. Developmental arrest of precocious vulval cell lineages. An
example of the cell division pattern of aP6.p cell in awild-type and
alin-28(If) hermaphrodite devel oping continuously are shown (with
the time scale normalized to the wild type) to illustrate the
precacious development of the vulval lineages in the mutant. Dauer
larva arrest interrupts the precocious vulval lineages at any of the
three rounds of cell division. Consequently, lin-28(If) dauer larvae
can contain various vulval cells (ovals), including Pn.p, Pn.px,
Pn.pxx and Pn.pxxx cells.

observed using Nomarski optics with white light to detect lacZ
expression and by epifluorescence to observe DAPI nuclear staining.
Pharyngeal expression of lin-11::1acZ provided a positive control for
fixation and Xgal staining (Freyd, 1991).

RESULTS

Post-dauer suppression of vulval defects in /in-28
hermaphrodites

Cdll lineage analysis showed that the L 2-specific events of the
lateral and ventral hypodermal cell lineages are deleted in lin-
28(If) animals, and the animals express all subsegquent hypo-
dermal developmental events, including vulval development,
one stage earlier than normal (Ambros and Horvitz, 1984;
Euling and Ambros, 1996; Fig. 1B). Although vulval develop-
ment is precocious in lin-28 mutant animals by approximately
one full larval stage, it is otherwise essentialy normal with
respect to the number of rounds of cell divisions and spatial
patterning and execution of the three vulval cell fates (Fig. 1B;
Euling and Ambros, 1996). In continuously developing lin-28
mutants, vulva morphogenesis begins normally, and then
appears to fail in the final phases, resulting in a nonfunctional
protruding pseudovulva.

When C. elegans larvae encounter unfavorable growth con-
ditions, they can arrest development at the end of the L2 as
dauer larvae (Riddle, 1988). When dauer larvae are placed in
conditions favorable for growth, they resume development and
execute L3 and L4 developmental events. The two wild-type
post-dauer larval stages, PDL3 and PDL4, consist of the same
developmental events as the L3 and L4 stages of continuous
development (Riddle, 1988; Liu and Ambros, 1991). Dauer
larva developmental arrest, followed by development through
the post-dauer larval stages, has adramatic effect on the vulval
phenotype of 1in-28 hermaphrodites. Whereas lin-28(If) adult
hermaphrodites that develop continuously never lay eggs
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Fig. 3. Post-dauer vulval cell lineages. Cell lineages were followed as described in Materials and Methods, and diagrammed asin Fig. 1, except

that the time scale isin hours at 20°C after feeding. Ovals represent vulval
cell lineages of one wild-type animal representative of the 11 wild-type an

cellsin dauer larvae at the time of feeding. (A) Post-dauer vulval
imals followed. (B) Post-dauer vulval cell lineages of onelin-

28(n719) animal representative of the 26 1in-28(n719) animals followed. P6.p cell division products were of similar size and spacing in the lin-
28(n719) dauer larva shown and, thus, the lineage history may be P6.pa, P6.ppa, and P6.ppp instead of as shown (P6.paa, P6.pap, and P6.pp).
*? indicates a cell that had not divided by the start of the PDL 3 |ethargus and was not observed further. Adherence to the ventral cuticle
appeared to be normal based on the criterion of avulval morphogenesis similar to the wild type, although this behavior was not explicitly noted
for individual nuclei. The rate of development of this particular animal was slightly slower than the wild type.

(n=118for n179; n=84 for n947), 71% (n=816) of lin-28(n719)
adults, and 69% (n=881) of 1in-28(n947) adults that develop
through the dauer larva stage exhibit normal vulva morpho-
genesis and can lay eggs. This dramatically improved vulval
morphology and egg-laying ability of post-dauer 1in-28 her-
maphrodites suggests that the process of post-dauer develop-
ment suppresses the effects of precocious vulval development.

Cells of partially developed vulvae behave like
vulval precursor cells (VPCs) after dauer larva
developmental arrest

To determine how development through the dauer larva stage
corrects the egg-laying defect of 1in-28 animals, we examined
the anatomy of lin-28(If) dauer larvae to identify the lineal
origin of their vulval cells (see Materials and Methods; Figs 2,
3B), and then followed their post-dauer vulva cell lineages. In
[in-28(n719) dauer larvae, precocious vulval development was
variably arrested at any of the three vulval cell division cycles
(Fig. 2). Inthe case of VPCsthat had not divided prior to dauer
larva arrest, the timing of their post-dauer vulval cell divisions
was normal and they expressed one of the three usual vulval
fates, depending on their position (for example, P7.p and P8.p
in Fig. 3B). Thus, in lin-28 animals, VPCs that did not divide
prior to the onset of post-dauer development retained their
VPC identity throughout dauer larva developmenta arrest and
post-dauer development.

Remarkably, Pn.px and Pn.pxx cellsthat had been generated
by division of VPCs prior to dauer larva arrest also behaved
like tripotent vulval precursor cells during post-dauer devel-
opment. Infact, Pn.p, Pn.px, and/or Pn.pxx cellsin [in-28 dauer
larvae all subsequently behaved equivalently, like tripotent
VPCs (Fig. 3B). Post-dauer Pn.p, Pn.px and Pn.pxx cells
always expressed cell lineage patterns characteristic of the 1°,
2°, or 3° cell fates expressed by normal P3.p-P8.p cells (VPCs).
In 26 lin-28(n719) animals in which post-dauer cell lineages
were followed, 28/28 Pn.px cells and 3/3 Pn.pxx cells (all of
which had been formed prior to dauer larva arrest) expressed

post-dauer cell lineage patterns like those normally generated
by VPCs. These post-dauer vulval cell lineage patterns closely
resembled the usual patterns generated by VPCs by al dis-
cernible criteria, including the number and orientation of cell
divisions, and the nuclear morphology and morphogenetic
behavior of their progeny. Further, alin-11::lacZ reporter gene
that is specific for certain cells of 2° lineages (Freyd, 1991; G.
Acton and H. R. Horvitz, personal communication) was
expressed during post-dauer development of 1in-28; lin-
11::lacZ animals in a pattern consistent with the generation of
normal 2° cell fates (data not shown).

We interpret this behavior of precocious Pn.px and Pn.pxx
cells during post-dauer development to reflect a dauer larva-
related process that reprograms the developmenta state of
these cells to that of the tripotent VPCs. It is noteworthy that
the timing of post-dauer vulval development in lin-28 animals
appears to be normal (Fig. 3), indicating that these repro-
grammed vulval cells obey temporal signals during post-dauer
development that are independent of lin-28, which controlsthe
timing of VPC division during continuous development
(Euling and Ambros, 1996).

Reprogrammed vulval cells acquire sensitivity to the
normal vulval patterning signals during post-dauer
development

Significantly, the specific fate expressed by a Pn.p, Pn.px or
Pn.pxx cell during 1in-28 post-dauer development appears to
depend on its position relative to the gonadal anchor cell and
not on its pre-dauer lineage history. In each post-dauer lin-28
animal observed, exactly three vulval cells generated 1° or 2°
vulva lineages, and the 1° and 2° lineages were always
centered under the anchor cell, as in wild-type vulval devel-
opment. For example, in the 1in-28(n719) dauer larva shown
in Fig. 3B, a Pn.pxx cell (P6.paa) that was positioned closest
to the gonadal anchor cell expressed a 1° cell lineage pattern
during post-dauer development. The cells flanking P6.paa in
that animal, a Pn.px cell (P5.pp) and a Pn.pxx cell (P6.pap),



Table 1. Gonad-dependence of vulval induction in lin-28
and thewild type

Vulval inductiont

post-dauer
Genotype Stage  Operation* Animas - + ++ o+t
N2 dauer AC+ 14 0 0 1 13
N2 dauer AC- 10 10 0 0 0
1in-28(n719)§ dauer AC+ 2 0 0 0 2
lin-28(n719)  dauer AC- 7 5 21 0 0

*AC-, anchor cell ablated with alaser microbeam (see Materials and
Methods). Mock-ablated animals (AC+) were anesthetized without ablation,
or anesthetized and subjected to ablation of gonadal cells other than the
anchor cell. (Additional AC+ 1in-28(n719) daver larvae were observed during
post-dauer development and found to exhibit vulval induction, but are not
included here because they were not anesthetized).

tThe extent of vulval induction isindicated using a notation modified from
Kimble, 1981. —, no vulval induction (only 3° fates occur); +, partial vulval
induction (mostly 3° fates expressed, but occasionally second round cell
divisions occur); ++, incomplete vulval induction (second and third rounds of
cell division frequently occur, but no morphogenesis occurs); +++ , complete
vulval induction (the normal pattern and number of 1°, 2° and 3° fates occur,
with normal vulva morphogenesis).

$An egg-laying defective animal.

8In continuously developing lin-28 animals in which the gonad had been
ablated, VPCs divided only once, indicating the absence of vulval induction.
This single round of division occurred precociously, in the mid-L2 stage
(Euling and Ambros, 1996).

fThe few VPC divisionsin these animals may result from incomplete
destruction of the anchor cell.

generated cell division patterns characteristic of the 2° fate.
Vulval cells more distant from the anchor cell, P5.pa, P6.pp,
P7.p and P8.p, expressed the 3° lineage pattern, which is the
uninduced fate typical of a VPC located further from the
anchor cell. Thus, these reprogrammed vulval cells appear to
acquire the potential to express any of the three vulval fates
during post-dauer development and they display the normal
sensitivity to spatial cuesin their cell fate specification.
During continuous development, Pn.px and Pn.pxx cells
seem to be restricted to specific programs of vulval cell
division and differentiation since they do not alter their fates
when intercellular signals are experimentally manipulated
(Sternberg and Horvitz, 1986). This determined behavior of
Pn.px and Pn.pxx cells contrasts with the state of VPCs, which
are tripotent cells whose fates are signal-sensitive. To further
test whether the post-dauer-reprogrammed Pn.px and Pn.pxx
cells are equivalent to norma VPCs, we examined whether
they required an inductive signal from the gonadal anchor cell
for the expression of 1° and 2° fates. During wild-type post-
dauer development, all VPCs expressed 3° fatesin the absence
of an anchor cell (Table 1), (asis the case during continuous
development in the wild type (Kimble, 1981) or lin-28 animals
(Euling and Ambros, 1996)). To test whether post-dauer repro-
grammed vulva cells in lin-28(n719) animals exhibit a similar
anchor cell dependence, we ablated the anchor cell in lin-
28(n719) dauer larvae and followed their post-dauer vulval cell
lineages. As expected for VPCs, Pn.px and Pn.pxx cells in
anchor cell ablated lin-28(n719) dauer larvae expressed 3°
fates during post-dauer development (Table 1; Fig. 4). In
contrast, complete induction of 1° and 2° fates during post-
dauer development was observed in al 1in-28(n719) mock-
operated dauer larvae. Thus, Pn.px and Pn.pxx cells that were
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Fig. 4. Gonad signal-dependence of reprogrammed vulval fatesin
lin-28 post-dauer development. Anchor cells of dauer larvae were
ablated with alaser microbeam, and cell lineages were followed as
described in Materials and Methods. The lineages shown are from
animalslisted in Table 1. Arrows indicate cells (represented by
ovals) that were present in arrested dauer larvae. Pre-dauer cell
divisions are indicated above the arrow.

generated prior to dauer larva arrest behaved like VPCs during
post-dauer development by the criterion of anchor cell depen-
dence of their 1° and 2° fates.

The same spatia signaling systems that govern vulval pat-
terning during continuous development also appear to act
during post-dauer development. A lin-3::lacZ transgene is
expressed in the gonad of wild-type dauer larvae and post-
dauer animals (data not shown), indicating that the gonadal
signal affecting post-dauer vulval cell lineagesislikely thelin-
3 gene product, as in continuous development. lin-15, lin-3,
lin-10 and lin-12 mutations all affect the patterning of wild-
type post-dauer vulval fates, although the penetrance of thelin-
3 and lin-10 defects are reduced compared with continuous
development (Ferguson and Horvitz, 1985; data not shown).
Furthermore, lin-28 mutations do not prevent the expression of
lin-3, lin-15, lin-10 and lin-12 vulva phenotypes during con-
tinuous development (Euling and Ambros, 1996), or during
post-dauer development (data not shown). Thus, itislikely that
the pattern of fates expressed by reprogrammed vulval cells of
lin-28 post-dauer animals is governed by the same intercellu-
lar signals as in the wild type.

Terminal (Pn.pxxx) cells of the vulval lineage are not
reprogrammed during post-dauer development
In contrast to the Pn.px and Pn.pxx cells, Pn.pxxx cells
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generated prior to dauer larva arrest failed to divide during
post-dauer development. In 26 [in-28(n719) dauer larvae, four
Pn.pxxx cells were observed to have been formed prior to
dauer larva arrest. None of these four Pn.pxxx cells divided
during post-dauer development. In one other lin-28(n719)
dauer larva, Pn.pxxx cells were evident that had begun to
undergo vulval morphogenesis. During post-dauer develop-
ment these cells continued vulval morphogenesis in the PDL3
and no further cell divisions were observed (data not shown).
(Thisanimal was egg-laying defective, suggesting that the pre-
dauer occurrence of differentiated Pn.pxxx cells may account
for some of the egg-laying defective 1in-28 post-dauer
animals). Thus, unlike Pn.px and Pn.pxx cells, Pn.pxxx cells
in lin-28 animals appear to be irreversibly determined under
the conditions of post-dauer devel opment.

Reprogramming of vulval cells occurs after
developmental arrest

To test for whether the reprogramming of precocious Pn.px
cellsin lin-28 animal s reflects the reversal of their normal state
of commitment, and whether reprogramming occurs before or
after dauer larva developmental arrest, we performed two
experiments: First, we confirmed that Pn.px cellsin lin-28 her-
maphrodites are committed with respect to the lateral signa
controlled by lin-12, as in the wild type. Second, we tested
whether precocious Pn.px cells formed prior to dauer larvae
arrest in lin-28 animals exhibit a norma response to the
presence or absence of the gonadal inductive signal.

To determine whether precocious Pn.px cells of lin-28
animals are committed with respect to lin-12 activity, we
performed temperature-shift experiments with lin-28(n719);
[in-12(n137sd n460ts) animals and scored their multivulval
(muv) phenotype. n460ts is a temperature-dependent suppres-
sor of the lin-12(n137sd) muv phenotype (Greenwald et al.,
1983; Table 2). Previous temperature-shift experiments with
lin-12(n137sd n460ts) animals showed that vulval fates are
affected by lin-12 activity during the early L3, only prior to
VPC cell division, and that VPC progeny (Pn.px) cells appear
to be irreversibly committed with respect to lin-12 activity
(Greenwald et al, 1983). Similarly, we found that temperature
shifts with 1in-28(n719); lin-12(n137sd n460ts) animals
indicated that vulval cell fates were atered by temperature
shifts performed before the time of VPC cell division but were
unaffected by temperature shifts performed after VPC cell
division (Table 2). These results indicate that in precocious
vulva development, as in normally timed vulval development,
VPC progeny are committed such that they are not sensitive to
lin-12 activity. Therefore, the post-dauer reprogramming of
Pn.px cellsin lin-28 animals likely reflects a reversal of their
normal state of determination.

To determine when, with respect to dauer larva develop-
mental arrest, vulval cells become reprogrammed, we used
laser microsurgery of the gonad to assess the developmental
state of precociously formed Pn.px cellsin lin-28(n719) dauer
larvae. VPC cell division is gonad-independent and Pn.px cell
division is gonad-dependent. Thus, if the precocious Pn.px
cells of 1in-28 animals are reprogrammed to VVPCs after dauer
larva developmental arrest, and not before, then their response
to the presence or absence of the gonadal inductive signal prior
to dauer arrest should be like that of normal Pn.px cells. Specif-
icaly, in animals lacking a gonadal anchor cell or lin-10

Table 2. Temperature shifts of [in-28(n719); lin-12(n137sd
n460ts) her maphrodites

Muv*
Stage
at shiftt Downshift Upshift
L1 molt, Pn.p 6/6 0/4
Early L2, Pn.p 8/10** 16
Mid-L2, Pn.pt 1/10** 5/7**
Pn.px§ 0/10 14/14**
Pn.pxx1l 0/4 2/2

*The fraction of animals that exhibited the multivulva (muv) phenotype
when scored in the L3 and L4 stages. The muv phenotypeis defined as
expression of at least four ectopic pseudovulvae evidenced by vulval
morphogenesis. Some in-28(n719) single mutant animals have two (and
occasionally three) ventral protrusions (Euling and Ambros, 1996), but have
not been observed to have four ventral protrusions. 27/27 1in-28(n719); lin-
12(n137sd n460ts) animals maintained at 15°C were muv by this criterion;
0/68 animals maintained at 25°C were muv. 0/16 1in-28(n719) animals
maintained at 15°C were muv and 0/16 maintained at 25°C were muv. These
1in-28(n719) controls were also examined for cell divisions and vulva
morphogenesis from P4.p and P8.p (P4/8.p) specifically: 0/36 and 1/32 P4/8.p
cells showed extra divisions and vulva morphogenesisin 1in-28(n719)
animals maintained at 15°C and 25°C respectively.

TAnimals at 15°C and 25°C were staged using Nomarski optics. The
precise state of development of individual Pn.ps was noted (Pn.p, no division;
Pn.px, one round of division; Pn.pxx, two rounds of division), and the
animals were shifted between 15°C and 25°C as described in Materials and
Methods.

FMid-L2 stage animals in which one or more VPC nuclei exhibited
characteristics of cellslatein the cell cycle: an enlarged nucleus and/or
nuclear membrane breakdown.

§Late L2 animalsin which four or more VPCs had divided one round and
none of the VPCs had divided two rounds.

L2 molt animals in which three or more VPCs had divided two rounds.
For downshifted animals, P5.p-P7.p had divided two rounds at the time of the
shift but P3.p, P4.p, or P8.p had not, since they rarely dividein lin-12(n137sd
n460ts) animals maintained at 25°C (see* above). For upshifted animals, at
least four VPCs had divided two rounds at the time of shift.

**|n each of these four sets, one animal produced 4 progeny cells from
P3.p, P4.p, and/or P8.p with no associated vulval morphogenesis. These
apparent intermediate fates were not counted as ectopic pseudovulvae
contributing to amuv phenotype. This intermediate phenotype was observed
in 1/15 lin-12(n137sd n460ts) single mutant animals maintained at 15°C.

activity, all VPCs, including those that normally express 1° and
2° fates, will express the 3° fate (Kim and Horvitz, 1990),
which is reflected by division of the VPC to produce two non-
dividing Pn.px cells. Thus, if Pn.px cells of 1in-28 animals
retain their identity until after developmental arrest, then they
are expected to be undivided in dauer larvae lacking an anchor
cell or lin-10 activity. Alternatively, if Pn.px cells become
reprogrammed to the VPC fate prior to dauer larva develop-
mental arrest, then they are expected to act like multipotent
VPCs, and thus could divide prior to arrest in dauer larvae
lacking the gonad or lin-10 activity.

The gonad was ablated in lin-28 animals at hatching and the
animals were allowed to form dauer larvae (Materials and
Methods). Also, lin-10 lin-28 dauer larvae were selected. Both
types of dauer larvae were then examined using Nomarski
optics to determine whether P5.px-P7.px cells had divided
prior to dauer larva arrest (Materials and Methods). In unop-
erated (AC+) control lin-28(n719) dauer larvae, we found that
approximately 25% of P5.px-P7.px cells had divided prior to
dauer larva arrest (Table 3). In contrast, a stetistically signifi-
cant decrease in the proportion of P5.px-P7.px cell divisions
was observed in lin-10 lin-28 and anchor cell-ablated lin-28



Table 3. Gonad signal-dependence of pre-dauer
P5.px-P7.px cell divisions

Stage % P5.px-P7.px
Experiment Genotype Gonad assayed  cellsdivided
1 lin-28(n719) + L2molt* 100 (n=18)
2 lin-28(n719) + davert  24.87 (n=230)
3 lin-28(n719) - daverf  6.3** (n=16)
4 lin-10(n1390)Iin-28(n719)  + daver§  4.2** (n=72)
5 lin-10(n1390)lin-28(n719)  + L3moltt 0 (n=66)

*Grown continuously, without dauer larva formation.

tRepresents a combination of 142 plate-starved and 88 pheromone-induced
dauer larvae (grown in liquid), which had similar percentages of P5.px-P7.px
divisions (25.4% and 22.8%, respectively).

FPheromone-induced dauer larvae (grown in liquid).

§Plate-starved dauer larvae.

fAnimals in which evidence of P5.px-P7.px divisions was ambiguous were
discarded.

**|n each of these two experiments, one apparent Pn.px division was
ambiguous (see Materials and Methods), but isincluded to provide
conservative overestimates of Pn.px division frequency relative to the control
animalsin experiment 2 (see { above). Considering that these values are
overestimates, they are not likely to be significantly different from experiment
5.

X-square analysis (Rohlf and Sokal, 1981; Sokal and Rohlf, 1981) was used
to compare the proportion of P5.px-P7.px cell divisionsin lin-28(n719) dauer
larvae with and without the vulval inductive signal. The conservative
proportion of P5.px-P7.px divisions (which includes the ambiguously divided
cells) that occurred in the absence of 1in-10 activity (experiment 4) is
statistically different from the proportion of Pn.px divisions that occurred in
the presence of 1in-10 activity (experiment 2) (x2=14.6; P= 0.0002). Similarly,
when the lin-10 mutant dauer larvae in experiment 4 were combined with
dauer larvae that had been laser operated to destroy the gonadal anchor cell
(experiment 3) and the combined values were compared with the control
animals (experiment 2), the proportion of P5.px-P7.px divisions was
statitically different from the controls (x2=16.8; P=0.0002).

animals (Table 3). Specifically, in 1in-28(n719) dauer larvae
lacking either lin-10 activity or a gonadal signal (combining
experiments 3 and 4, Table 3), lessthan 4.5% of the Pn.px cells
appeared to have divided prior to dauer larvae arrest. The sig-
nificant decreasein Pn.px cell divisions observed upon removal
of the gonadal signal or lin-10 activity indicates that the
majority, and perhaps all (see Table 3 legend), of the preco-
ciously generated pre-dauer Pn.px cellsin lin-28 dauer larvae
exhibited a normal Pn.px cell identity prior to developmental
arrest. This result is consistent with the conclusion that preco-
cious Pn.px cells are determined towards their fates and that
they become reprogrammed to VPCs after dauer larva arrest.

We examined lin-11::lacZ expression in lin-28 dauer larvae
in order to assess the developmental state of certain Pn.pxx
cells in dauer larvae. In wild-type animals carrying an inte-
grated copy of the lin-11::1acZ reporter gene, B-galactosidase
is expressed in particular Pn.pxx cells of 2° lineages (Freyd,
1991). Of 100 1in-28(n947); lin-11::lacZ dauer larvae that
were examined, none exhibited [-galactosidase activity in
vulval cells (data not shown). Based on the frequency of
P5/7.pxx cellsin lin-28 dauer larvae and the frequency of lin-
11::lacZ expression in P5/7.pxx cells of 1in-28 animals (data
not shown), approximately 10% of these 100 dauer larvae were
expected to contain lacZ-expressing P5/7.pxx cells. This
apparent repression of lin-11::lacZ expression in lin-28 dauer
larvae may reflect an inhibition of vulval gene expression that
may contribute to the reprogramming of vulval cells.
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DISCUSSION

Reprogramming of determined vulval cells to the
multipotent VPC state

Previous studies of continuously developing wild-type larvae
showed that VPCs are tripotent, while their Pn.px and Pn.pxx
progeny are determined with respect to positional information
(Sulston and White, 1980; Kimble, 1981; Greenwald et dl.,
1983; Sternberg and Horvitz, 1986). Two observations suggest
that the precocious Pn.px and Pn.pxx cells of 1in-28 animals
are also positionally determined. First, the fates expressed by
precocious vulval cellsin 1in-28 animals exhibit the same sen-
sitivity to the gonadal inductive signal and the same involve-
ment of genetically identified signalling molecules as does
wild-type vulval development (Euling and Ambros, 1996).
Second, here we show that the time of action of atemperature-
sensitive lin-12(sd) mutation is prior to VPC cell division in
[in-28 precocious animals. This indicates that, with respect to
the lateral signal controlled by lin-12, the fates of precocious
Pn.px and Pn.pxx cells are established prior to VPC cell
division, as in the wild type.

We found that, if Pn.px and Pn.pxx cells are placed in the
novel temporal context of the dauer larva and post-dauer devel-
opment using a lin-28 mutation, they become reprogrammed
to the tripotent, signal-dependent VPC state. This conclusion
is based on three observations of the behavior of precociously
formed vulval cells during post-dauer development of lin-28
mutants. (1) they divide during the first post-dauer stage
(PDL3) at the same time as do wild-type VPCs; (2) they each
express one of the three VPC-characteristic (1°, 2° or 3°) cell
lineage fates and (3) they express those fates in response to
intercellular signalsin amanner indistinguishable from normal
VPCs.

The observation that, although Pn.px and Pn.pxx cells are
positionally determined during continuous development, they
nevertheless become reprogrammed to V PCs after dauer larva
arrest suggests that the steps in cell fate restriction of Pn.px
and Pn.pxx cells are reversible in the wild type. By contrast,
Pn.pxxx cells were not reprogrammed upon post-dauer devel-
opment. These findings suggest that Pn.px and Pn.pxx cell fate
determinationinvolves stepsin vulval cell faterestriction inter-
mediate between the multipotency of VPCs and the terminal
differentiation characteristic of Pn.pxxx cells. It is striking that
vulval cells (specifically Pn.px and Pn.pxx cells) that are never
found in wild-type dauer larvae are always reprogrammed to
VPCs if they are ‘temporally transplanted’ to dauer larvae of
precocious mutants. This suggests that Pn.px and Pn.pxx cells
may normally possess cryptic VPC character that is unmasked
when the vulval developmental program isinterrupted in dauer
larvae.

Reversal of cell determination has been observed in other
systems. Myogenic differentiation appears to be reversible
during vertebrate limb regeneration (Lo et a., 1993). Similarly,
yeast cells can switch from the meiotic program back to the less
differentiated state of mitotic growth in response to temporary
cell cycle arrest (Honigberg and Esposito, 1994). While it is
unclear what these other situations may have in common with
the vulval cell reprogramming, perhapsin general the interrup-
tion of developmental and cell division programs, combined
with specific novel developmental signals, can lead to the
reversal of cell fate restriction. The post-dauer reprogramming
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of precocious vulval cells reported here, together with the post-
dauer reprogramming previously observed for lateral hypoder-
mal cells of C. elegans heterochronic mutants (Liu and Ambros,
1991), suggest that a global activity sets cells of the worm to
the proper L3-equivalent temporal identity during the PDL 3.

Reprogramming is specific to dauer larva
development

The reprogramming exhibited by precocious vulval cells was
observed only during post-dauer development of 1in-28
animals, not during continuous development, or under con-
ditions of starvation without dauer larva differentiation (data
not shown). The reprogramming is not simply a result of the
absence of 1in-28 activity, since vulval cells of lin-14 mutants
exhibit a similar post-dauer reprogramming (data not shown).
However, because we observed vulval cell reprogramming only
in dauer larvae of heterochronic mutants, we cannot rule out the
possibility that the phenomenon reflects a role for the het-
erochronic gene pathway in maintenance of vulval cell devel-
opmental identity specifically in dauer larvae. We do not favor
thislatter interpretation because it requires that one assume that
lin-28 and lin-14 activities are required to maintain a Pn.px or
Pn.pxx identity exclusively during the dauer larva stage, and
not during continuous development or during the execution of
post-dauer development. We favor the simpler interpretation
that reprogramming is unrelated to lin-28 or lin-14 per se, and
instead reflects an activity present in wild-type animals that is
revealed by the post-dauer behavior of precocious vulval cells
in these mutants.

Reprogramming occurs after developmental arrest

Three observations indicate that reprogramming to the multi-
potent VVPC occurs after dauer larvadevelopmental arrest. First,
the patterns of pre-dauer cell divisions were inconsistent with
reprogramming prior to dauer larva arrest; we never observed
greater than three rounds of vulval cell divisions before dauer
larva arrest in lin-28 animals. Second, analysis of 1in-28 dauer
larvae that lacked an anchor cell signal or lin-10 activity
suggests that pre-dauer Pn.px cell division is gonad-dependent,
as is the case for normal Pn.px cells, but unlike VPCs. These
results indicate that Pn.px cells become reprogrammed to the
VPC state only after dauer larva arrest — perhaps in the arrested
dauer larvae itself, or during early post-dauer development.
Third, we observed that al Pn.pxxx cells generated prior to
dauer larva arrest exhibited the morphology and non-dividing
behavior characteristic of terminally differentiated vulval cells.
The observation that the Pn.pxxx cell identity can be established
in lin-28 dauer larvae suggests that pre-dauer vulval lineagesin
these mutants proceed normally up to the point of develop-
mental arrest and supports the view that reprogramming of
Pn.px and Pn.pxx cellsto VPC cells occurs after arrest.

Our finding that lin-11::lacZ expression was not detected in
[in-28(n947); lin-11::lacZ dauer larvae is consistent with the
notion that reprogramming of vulval cells, which would be
expected to result in repression of lin-11 expression, occursin
the arrested dauer larva. However, since the dauer larvais char-
acterized by a globa decrease in transcription (Dalley and
Golomb, 1992), the absence of lin-11::lacZ expression could
reflect a general suppression of gene activity in dauer larvae
that may or may not be related directly to the reprogramming
of vulval cellsin particular.

wild type
or
lin-28(If) lin-28(If)
VPC VPC
Lo Pn.px

1 Pn.pxx

I I Pn.pxxx

Fig. 5. A model for the reprogramming of determined vulval cellsto
the multipotent VPC statein lin-28 dauer larvae. According to this
model, after dauer larva developmental arrest, vulval cellsthat are
not terminally differentiated, (i.e., Pn.p, Pn.px, and Pn.pxx cells but
not Pn.pxxx cells), enter the resting stage of the cell cycle and
engage aregulatory mechanism that represses the activity of vulva-
specific genes. Consequently, those cells acquire and/or maintain a
VPC-equivaent state, and express one of the three VPC potentials
during post-dauer development. The same mechanism is proposed to
prevent premature expression of differentiated vulval fates by VPCs
in wild-type dauer larvae.

Developmental arrest and reversal of vulval cell
determination

There are numerous models for the kinds of regulatory changes
that might underlie the observed post-dauer reprogramming of
vulval cells. In general, it seems that a reversal of vulva cell
determination would require a despecification of vulval cellsand
a reactivation of the VPC tripotent state (Fig. 5). This process
could occur in two steps. First, al vulval cells that have not
become terminally differentiated (Pn.p, Pn.px and Pn.pxx cells)
lose their cell fate specification upon dauer larva arrest. Second,
for example at the onset of post-dauer development, these
despecified cells are susceptible to a post-dauer ‘L 3-specifica-
tion’ activity such that they acquire the tripotency and intercel-
lular signal-dependence typica of L3-stage VPCs. In contrast,
reprogramming could occur by a one-step process, where the
despecification of a determined fate in the dauer larva results
directly in the unmasking of the tripotent VPC state. Perhaps the
tripotent VPC identity isaground state for thevulval cell lineage
that is expressed by Pn.p cells during continuous devel opment
when thelin-14 pathway isdown-regulated (Euling and Ambros,
1996) and can be re-expressed by Pn.p progeny if the vulval
differentiation program is repressed in dauer larvae.

It is likely that reprogramming would involve changes in
vulval-specific gene expression. For example, in the wild type,
lin-12::lacZ expression is relatively high in Pn.pxx cells of 2°
lineages and low in P6.pxx cells (Wilkinson and Greenwald,
1995). This means that, if a precocious P6.pxx cell of alin-28
dauer larva becomes reprogrammed to a VPC fated to express
the 2° fate (for one such observed case, see Fig. 3B), lin-12
expression would need to become reactivated in that cell during
post-dauer devel opment. Similarly, if lin-11 isexpressed in pre-
cacious 2° cell lineages prior to dauer larva arrest, it would



likely become inactivated in those cells if they subsequently
become reprogrammed to VPCs that express anon-2° cell fate.

The mechanism by which vulval cells are reprogrammed to
VPCs may be related to the cell cycle arrest and/or suspended
development of dauer larvae. It islikely that cells of the devel-
oping larva enter the resting phase (Go) of the cell cycle upon
dauer larva arrest, since no cell divisions occur in dauer larvae
and they are metabolically depressed (reviewed in Riddle,
1988; Wadsworth and Riddle, 1988). Physiological change(s)
related to Go cell cycle arrest may contribute to the repro-
gramming of Pn.px and Pn.pxx cells, perhaps by repressing
stepsin vulval differentiation. A detailed understanding of the
reprogramming mechanism requires a genetic and molecular
analysis of the reprogramming process and a precise charac-
terization of the cell cycle state of vulval cellsin dauer larvae.

Maintenance of multipotency

We propose that the reprogramming mechanism acting on preco-
cious vulva cdls reflects a process that affects the developmental
state of many or al cel types during dauer larva arrest and post-
dauer development (Liu and Ambros, 1991). A reprogramming
mechanism may serveto coordinatethe tempora patterns of devel-
opment in the animal after an indefinite period of suspended devel-
opment as a dauer larva. According to this view, the vulval cell
reprogramming that we describe here for precocious vulval cdls
would reflect anorma process acting in the vulva lineage of wild-
type dauer larvae. Specificaly, in wild-type dauer larvae, the
reprogramming activity may prevent VPCs from executing pre-
maturely steps in vulval differentiation. Perhaps developmental
arrest would otherwise predispose VPCs in wild-type dauer larvae
to execute prematurely, in the absence of cell division, one or more
steps toward vulval cell differentiation. Without a mechanism for
reversing the state of such aberrantly differentiated cells to the
proper VPC date, post-dauer vulva development would be
abnormal. Perhaps precursor cells in other systems, such as other
organ primordia, employ analogous regulatory mechanisms for
actively reinforcing the proper developmental state during periods
of developmentd quiescence.
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