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Most Caenorhabditis elegans microRNAs
Are Individually Not Essential
for Development or Viability
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MicroRNAs (miRNAs), a large class of short noncoding RNAs found in many plants and animals, often act to post-
transcriptionally inhibit gene expression. We report the generation of deletion mutations in 87 miRNA genes in
Caenorhabditis elegans, expanding the number of mutated miRNA genes to 95, or 83% of known C. elegans miRNAs.
We find that the majority of miRNAs are not essential for the viability or development of C. elegans, and mutations in
most miRNA genes do not result in grossly abnormal phenotypes. These observations are consistent with the
hypothesis that there is significant functional redundancy among miRNAs or among gene pathways regulated by
miRNAs. This study represents the first comprehensive genetic analysis of miRNA function in any organism and
provides a unique, permanent resource for the systematic study of miRNAs.
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The in vivo functions of a few miRNAs have been
established. In C. elegans, the lin-4 miRNA and the let-7 family
MicroRNAs (miRNAs) were discovered in C. elegans during of miRNAs control the timing of aspects of larval develop-

Introduction

studies of the control of developmental timing [1-5]. miRNAs ment. For example, the lin-4 miRNA controls hypodermal
are approximately 22-nucleotide noncoding RNAs that are cell-fate decisions during early larval development by
thought to regulate gene expression through sequence-  pegatively regulating the lin-14 and lin-28 mRNAs [1-3,5,47].

specific base-pairing with target mRNAs [6]. miRNAs have

The let-7 miRNA controls hypodermal cell-fate decisions
been identified in organisms as diverse as roundworms, flies,

: during late-larval development by regulating the lin-41, hbl-1,
fish, frogs, mammals, flowering plants, mosses, and even daf-12, and pha-4 mRNAs [48-51]. Three additional C. elegans

viruses, using genetics, molecular cloning, and predictions let-7-like miRNAs, miR-48, miR-84, and miR-241, also act in
from bioinformatics [7-16]. In C. elegans about 115 miRNA

genes have been confidently identified [10,11,17-20].

In animals, miRNAs are transcribed as 10ng RNA precur- Editor: Michael T. McManus, University of California San Francisco Diabetes Center,
sors (pri-miRNAs), which are processed in the nucleus by the United States of America
RNase II1 enzyme complex Drosha-Pasha/DGCRS to form the Received August 30, 2007; Accepted October 12, 2007; Published December 14,

approximately 70-base pre-miRNAs [21-25] or are derived 2007

directly from introns [26,27]. Pre-miRNAs are exported from A previous version of this article appeared as an Early Online Release on October
the nucleus by Exportin-5 [28], processed by the RNase III 15, 2007 (doi:10.1371/journal.pgen.0030215.eor).

enzyme Dicer, and incorporated into an Argonaute-contain- Copyright: © 2007 Miska et al. This is an open-access article distributed under the
ing RNA-induced si]encing Complex (RISC) [29]. Within the terms 'of 'the'Creatlve Common§ Atftrlbutlon Llc'ense, wh]ch permltsv u'nrestncted
K . . | use, distribution, and reproduction in any medium, provided the original author
silencing complex, metazoan miRNAs pair to the mRNAs of and source are credited.

protein-coding genes, usually through imperfect base-pairing
with the 3’-UTR, thereby specifying the posttranscriptional
repression of these target mRNAs [6,30]. Binding of the
silencing complex causes translational repression [31-33] @ These authors contributed equally to this work.

and/or mRNA destabilization, which is sometimes through @ Current address: Wellcome Trust/Cancer Research UK Gurdon Institute,
direct mRNA cleavage [34,35], but usually through other University of Cambridge, Cambridge, United Kingdom

mechanisms [36-40]. Because many messages have been
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the 5 region of the miRNA known as the miRNA seed "¢ Current address: Department of Molecular Biology, Massachusetts General
(nucleotides 2-7), targets of metazoan miRNAs can be Hospital, Boston, Massachusetts, United States of America
predlcted above the background of false'pOSItlves by search- ™ Current address: Department of Biological Sciences, Stanford University,
ing for conserved matches to the seed region [41-45]. In Stanford, California, United States of America
nematodes, at least 10% of the protem-codlng messages ¢ Current address: Molecular and Cellular Biology Program, University of

appear to be conserved targets of miRNAs [46]. Washington, Seattle, Washington, United States of America
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Author Summary

MicroRNAs (miRNAs) are tiny endogenous RNAs that regulate gene
expression in plants and animals. Individual miRNAs have important
roles in development, immunity, and cancer. Although the inves-
tigation of miRNA function is of great importance, to date few
miRNAs have been studied in the intact organism because of a lack
of mutants in which specific miRNAs have been inactivated. Here we
describe a collection of loss-of-function mutants representing the
majority of all known miRNA genes in the nematode Caenorhabditis
elegans. This study identifies a new role for miRNAs in C. elegans and
also demonstrates that most miRNAs are not essential for viability or
development. Our findings suggest that many miRNAs act
redundantly with other miRNAs or other pathways. We expect that
this collection of MIRNA mutants will become a widely used
resource to further our understanding of the biology of miRNAs.

the control of developmental timing and likely regulate the
hbl-1 mRNA, but act earlier in development than the let-7
miRNA [52,63]. The C. elegans lsy-6 miRNA acts in the
asymmetric differentiation of the left and right ASE chemo-
sensory neurons. Specifically, the Isy-6 miRNA targets the cog-
1 mRNA, resulting in a shift of marker gene expression in the
left ASE to resemble marker gene expression in the right ASE
[20]. The first miRNA studied functionally in Drosophila is
encoded by the bantam locus, which had previously been
identified in a screen for deregulated tissue growth [54]. The
bantam miRNA stimulates cell proliferation and reduces
programmed cell death. bantam directly regulates the pro-
apoptotic gene hid. A second Drosophila miRNA, miR-14, also
reduces programmed cell death [55]. The muscle-specific
Drosophila miRNA miR-1 is required for larval development
and cardiac differentiation [56,57]. Dmir-7 regulates the
transcription factor Yan [58]. Finally, Drosophila miR-9a is
required for sensory organ precursor specification [59], and
Drosophila miR-278 is required for energy homeostasis [60].
The first loss-of-function studies of miRNAs in the mouse
have been reported demonstrating a role for miR-1 and miR-
208 in cardiac growth in response to stress [61,62] and miR-
155/BIC in normal immune function [63,64].

miRNA function has also been inferred from studies in
which miRNAs have been misexpressed in worms, flies, frogs,
mice, and cultured mammalian cells [65]. In addition, miRNA
function has been explored by perturbing the functions of
genes in the pathway for miRNA biogenesis and by reducing
miRNA levels using antisense oligonucleotides. For example,
mutants defective in Dicer, which is essential for miRNA
biogenesis, have been studied for C. elegans [66,67], Drosophila
[68,69], the zebrafish [70,71], and the mouse [72-75]. In all
cases, Dicer was found to be essential for normal develop-
ment. In addition, members of the AGO subfamily of
Argonaute proteins, which act in the miRNA pathway, are
essential for normal C. elegans and mouse development
[67,76].

In Drosophila, 2' O-methyl antisense oligoribonucleotides
have been used in miRNA depletion studies [77]. This
technique was initially described for human cells and C.
elegans [78,79] and appears to offer sequence-specific inhib-
ition of small RNAs for a limited time span. Injection of
individual 2 O-methyl antisense oligoribonucleotides com-
plementary to the 46 miRNAs known to be expressed in the
fly embryo resulted in a total of 25 different abnormal
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phenotypes, including defects in patterning, morphogenesis,
and cell survival [77]. Knockdown of miRNAs using modified
2" O-methyl antisense oligoribonucleotides also has been
reported for the mouse [80]. Very recently, a study reported
the use of morpholinos to knockdown miRNA function in
zebrafish and identified a role for miR-375 in pancreatic islet
development [81].

To gain a broader understanding of miRNA function, we
generated a collection of deletion mutants of the majority of
known miRNA genes in C. elegans. We found that mutations in
most miRNA genes do not result in striking abnormalities,
and therefore most miRNA genes likely have subtle or
redundant roles. This permanent collection provides a
resource for detailed studies of miRNA function not possible
previously.

Results

The cloning of many miRNAs from C. elegans using
molecular biological techniques prompted us to take a
genetic approach to study miRNA function in vivo in C.
elegans through the generation of loss-of-function mutants.
We isolated deletion mutants using established C. elegans
techniques [82,83]. We made extensive use of the “poison”
primer method, which increases the sensitivity of detection of
small deletions [84]. Most C. elegans miRNAs were cloned and
verified in northern blot experiments [10,11,17,85]. Some
miRNAs were predicted based on pre-miRNA folds and
verified using northern blotting or PCR with specific primers
and cloned miRNA libraries [17,18,85,86]. The public data-
base for miRNAs, miRBase release 9.0, listed 114 C. elegans
miRNAs [87,88]. Of these 114, 96 miRNAs are confidently
identified, based on expression and the likelihood of being
derived from stem-loop precursors, whereas many of the
others do not appear to be authentic miRNAs [17-19].
Recently, two studies using high-throughput sequencing
methods identified 21 additional miRNAs [19,26] bringing
the total number of miRNAs identified with high confidence
in C. elegans to 115 and the total number of annotated miRNA
candidates to 135.

We isolated knockout mutants covering 87 miRNA genes.
We previously described our studies of knockouts of three
additional miRNA genes [52], and deletions in two other
miRNA genes had been obtained by the C. elegans knockout
consortium (D. Moerman, personal communication) [84].
Three miRNA genes had been mutated in genetic screens, lin-
4, let-7, and Isy-6 [2,4,20]. Thus, 95 C. elegans miRNAs can now
be functionally analyzed using mutants (Table 1). Additional
alleles for a subset of these miRNA genes were also isolated by
the C. elegans knockout consortium (D. Moerman, personal
communication) [84].

The median size of the deletions we isolated was 911 bases
with a range of 181-6,288 bases (Tables 1 and S1). Some
deletions likely affect neighboring genes in the case of
intergenic miRNA genes or host genes in the case of miRNA
genes found in introns. For example, the lethality linked to
mir-50m4099) (Table 2) might be a consequence of a loss-of-
function of mir-50 or of an effect on the predicted host gene
Y71G12B.11a (Table 1).

We performed a broad phenotypic study of all available
miRNA loss-of-function mutants, including mutants that had
been reported earlier [2,4,20,52]. We focused on phenotypic
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Table 1. miRNA Mutants

Table 1. Continued.

miRNA Allele(s) Chromo- Deletion Other Locus miRNA Allele(s) Chromo- Deletion Other Locus
Gene(s) some Size (bp) Information Gene(s) some Size (bp) Information
let-7 n2853ts® X Point mir-246 n4636 \" 518

mutation mir-247, mir-797  n4505 X 611
lin-4 e912° Il Not mir-249 n4983 X 734

determined mir-251 n4606 X 976
Isy-6 ot71¢ Vv 1,071 mir-252 n4570 ] 1,447
mir-1 n4101, | 380, 823 mir-253 nDf64 \ 1,095 Intron of F44E7.5

n4102 mir-254 n4470 X 484 Intron of gcy-9
mir-2 n4108 | 556 mir-256 n4471 \' 1,027 Upstream of mec-1
mir-34 n4276 X 630 mir-257° n4548 Vv 785
mir-35-41 nDf50 1l 1,261 Intron of Y62F5A.9 mir-258° n4797 X 992
mir-42-44 nDf49 Il 1,103 mir-259 n4106 \' 529
mir-45 n4280 Il 1,495 mir-260° n4601 ] 911
mir-46 n4475 11l 1,637 mir-261° n4594 I 993 Also deletes B0034.4
mir-47 gk167° X 1,110 mir-265° n4534 v 1,215
mir-48 n4097 € Vv 293 mir-268° n4639 \ 1,010
mir-48, mir-241 nDf51¢ Vv 5,930 mir-269° n4641 v 496
mir-50 n4099 | 1,015 Intron of Y71G12B.11a mir-270° n4595 \" 954
mir-51 n4473 \Y 1,504 mir-272° nDf66 n 1,054
mir-52 n4100, n4114, IV 398, 148, 559 mir-273° n4438 | 762
n4125 mir-353 nDf61 | 521 Also deletes rpl-24.1
mir-53 n4113 \% 805 mir-355 n4618 Vv 1,106
mir-54-56 nDf45, nDf58 X 150, 1,805 mir-357-8 nDf60 Vv 1,594
mir-57 gk175d Il 474 mir-359 n4540 X 627 Also deletes Y41G9A.10
mir-58 n4640 v 785 Intron of Y67D8A.1 mir-360 n4635 X 1,307
mir-59 n4604 \% 1,483
mir-60 n4947 I 787
mir-61, mir-250 nDf59 v 1,142 For miRNA clusters “-“ indicates that all miRNAs are deleted inclusively, e.g., mir-35-41
mir-62 n4539 X 993 Intron of ugt-50 means that mir-35, mir-36, mir-37, mir-38, mir-39, mir-40, and mir-41 are all deleted. Genes
= or predicted genes near to or overlapping with miRNA genes are as annotated in
ml‘r 23 R n4i68 X 57 WormBase Release WS170 at http://ws170.wormbase.org/ [107].
m{r—64, mir-229 - nDf52 i 652 Previously described in [4].
mir-64-66, nbf63 I 3,124 ®Previously described in [5].
mir-229 “Previously described in [20].
mir-67 n4899 1] 526 Intron of zmp-1 9Mutant alleles were generated by the C. elegans knockout consortium [93].
mir-70 n4109, n4110 vV 738, 203 Intron of T10H9.5 ¢Previously described in [52].
mir-71 n4105, n4115 | 354, 181 fUnIiker to encode miRNAs [18,19].
mir72 n4130 I 968 doi:10.1371/journal.pgen.0030215.t001
mir-73-74 nDf47 X 326
mir-75 n4472 X 1,972 e ot . atd anid - . . : o
mir-76 4474 » on assays that are relatively rapid and that exar.mne C. elegans
77 14286 I 1,036 morphology, growth, development, and behavior. The assays
mir-78 n4637 v 738 we performed are shown in Table 3 and the phenotypes we
mir-79 n4126 I 386 observed are summarized in Table 2. Our initial phenotypic
mir80 mir227 _nDi>3 I 728 analysis revealed a single new abnormality linked to miRNA
mir-81-82 nDf54 X 6,288 Also deletes T02D1.2 Y X g . ¥ . R
mir-83 4638 Y 823 loss-of-function: deletion of the mir-240 mir-797 miRNA
mir-84 n4037° X 791 cluster resulted in abnormal defecation cycle lengths. This
mir-85 n4117 I 563 Intron of F49E12.8, defecation defect was rescued by the introduction of a
antisense . . . .
paiors o i 1,062 P transgene c%lr.rylng the mir-240 mir-797 genomic locus (Table
mir-87 n4104, n4123, V 514, 254, $2). In addition, we observed other abnormal phenotypes.
n4124 615 Mutation of the mir-35-41 miRNA cluster resulted in temper-
miglZd W25 by 2l Intron of trpa-1 ature-sensitive embryonic and larval lethality; this lethality
mir-228 n4382 v 1026 was rescued by the introduction of a transgene carrying the
mir-230 n4535 X 957 : y ) g ying
mir-231 n4571 1 1,104 mir-35-41 genomic locus (unpublished data). We were unable
mir-232 nDf56 1\ 2,148 Also deletes F13H10.5 to generate homozygotes for alleles of mir-50 and mir-353. mir-
mir-233 n4761 X 669 Intron of W03G11.4 50 and mir-353 are in introns of genes that when inactivated
mir-234 n4520 I 1,178 . . . . .

’ RNAI result in embryonic lethali nd m lain wh
mir-235 14504 | 781 by RN esu t. embryonic lethality and may expla ‘why
mira37 n4296 X 614 we could not isolate homozygotes for our new deletions.
mir-238 n4112 I 536 Indeed, the introduction of a transgene carrying the mir-50
mir-239a-b nbf62 X 2351 genomic locus failed to rescue the lethality associated with
mir-240, mir-786 n4541 X 1185 . ) . o .
e 143155, n4316° V 506, 458 the mzr‘-50 allele.(unpub.hshed data). The numb§r of tlm.es
mir-242 n4605 v 949 each of the deletion strains has been outcrossed is shown in
mir-243 n4759 \Y 1,102 Table 2. It is conceivable that some of the miRNA deletion
mir-244 n4367 | 1,832 strains harbor additional mutations that suppress abnormal-
mir-245 n4798 | 1,064
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Roles of Caenorhabditis elegans miRNAs
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Redundancy of miRNAs and Their Regulatory Pathways
One difference between most protein-coding genes and
most miRNA genes in C. elegans is the number of paralogs.
Whereas fewer than 25% of protein-coding genes have a
recognizable paralog in the C. elegans genome [93], about 60 %
of miRNAs are members of a family of two to eight genes [19].
A higher number of paralogs might be a consequence of
smaller gene size, which could allow a greater opportunity for
gene duplication. As a consequence, miRNAs might act
redundantly with other miRNAs and mutation of all paralogs
of a miRNA or a miRNA family might result in synthetic
abnormal synthetic phenotypes. Alternatively, some nema-
tode miRNAs might act in parallel with other regulatory
pathways that can compensate gene expression when the
miRNAs are lost. For example, genetic data indicate that
Drosophila mir-7 directly regulates the transcriptional repress-
or Yan in the fly eye, but that loss of mir-7 does not appreciably
alter eye development, probably because of redundant
protein turnover mechanisms that can also downregulate
Yan [58]. In such a scenario, disruptions in the other
mechanisms would be needed to reveal the miRNA function.

Roles for Evolutionary Conserved miRNAs

The discovery that the let-7 miRNA is conserved among
bilateria, including such disparate organisms as C. elegans and
humans [94], appears not to have been an exception: for 15
miRNA families, miRNAs with identical seeds have been
found in C. elegans, flies, fish, and mammals, and several
additional families are predicted to be conserved throughout
these diverse lineages [19,95-97]. The conservation is not only
for primary miRNA sequences, but also, at least in some cases,
for patterns of expression. For example, the miRNA miR-1 is
expressed in muscles of Drosophila, the zebrafish, and the
mouse [11,56,98]. However, the predicted mRNA targets of
miRNAs might not share the same degree of conservation as
miRNA expression patterns—the spectrum of predicted
mRNA targets varies significantly among metazoans [99].
With several miRNA loss-of-function mutants of Drosophila
now available, we can begin to compare miRNA functions
between C. elegans and Drosophila. Among the microRNAs for
which mutations exist for flies and worms, Dmir-1 and C.
elegans miR-1 are the most similar in sequence [56]. Whereas
Dmir-1 loss-of-function mutant fly larvae display muscle
degeneration and die [56], we found that C. elegans miR-1 loss-
of-function mutant animals are fully viable. Despite these
differences, the mir-I miRNA family could have a conserved
role in muscle homeostasis and function. For example, the
severity of the muscle defect of C. elegans mir-1 mutants might
depend on physiological conditions, as is the case for the
Dmir-1 mutant phenotypes of Drosophila [56].

We expect that as additional miRNA mutants become
available for flies and other animals there will be future
comparative studies of the biological functions of miRNAs
using the collection of C. elegans miRNA mutants we have
generated. More generally, we believe that the functions of
miRNA genes, like the functions of protein-coding genes, will
often prove to be conserved among animals, and that the
collection of miRNA mutants we have generated will help
define, test, and analyze general biological roles of miRNAs.

Materials and Methods

Nematode methods. C. elegans was grown using standard conditions
[100]. The wild-type strain was var. Bristol N2 [101]. Nematodes were
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grown at 25 °C, except where otherwise indicated. Details about the
mutant alleles we generated are shown in Table S1. All strains
generated in this study have been submitted to the Caenorhabditis
Genetics Center. Deletion allele information can be accessed directly
from WormBase (http://[www.wormbase.org).

Generation of deletion mutants. Deletion mutants were isolated
from a frozen library of worms mutagenized with ethyl methane-
sulphonate (EMS), 1,2,3,4-diepoxybutane (DEB), or a combination of
UV irradiation and thymidine monophosphate (UV-TMP) [82,83]. In
most instances, to enhance the detection of deletions one or two
“poison” primers were included in the first round of nested PCR
reactions [84]. These poison primers were designed to anneal close to
the mature miRNA sequence. In the first round of PCR, the three
primers in the reaction (external forward, external reverse, and
poison primers) generated both a full-length (from external primers)
and a shorter product (from external and poison) from the wild-type
allele. The shorter product was amplified more efficiently and
thereby out-competed the amplification of full-length product. A
deletion allele that removed the miRNA sequence and therefore
removed the poison primer-binding site generated a product only
from the external primers. In the second round of PCR, two internal
primers designed just inside of the external primers amplified the
full-length product but not the shorter product from the wild-type
allele and a single product from the deletion allele. Mutant strains
were outcrossed with the wild-type strain as indicated (Table S1).

Phenotypic analysis. The minimum number of individual animals
scored in each assay is given as n in parentheses below. (1)
Locomotion: Number of body bends during a 20-s period were
counted 4 min after transferring 1-d-old adult animals to fresh plates
containing food (n = 10). (2) Pharyngeal pumping: Frequency of
grinder displacement was counted for 20 s by eye, but otherwise as
described previously [102] (n = 5). (3) Defecation: The time between
defecation cycles marked by posterior body muscle contraction
events was measured [103] (n= 3, 5 events per animal). (4) Egg laying:
1-d-old adult animals were lysed in bleaching solution for 10 min in
the well of a round-bottom 96-well plate, and eggs were counted [100]
(n=20). (5) Chemosensory neurons: L2 or L3 larvae were stained with
DiO dye (Invitrogen) and filling of the neurons ASI, ASJ, ASH, ASK,
AWS, ADL, PHA, PHB was scored [104] (n = 15). (6) Cell number/
nuclear morphology: L1 larvae were fixed and stained with 4',6-
diamidino-2-phenylindole, dihydrochloride (DAPI) (Invitrogen) as
described previously [105]. Nuclei of the ventral cord and intestine
were counted [106] (n = 15). (7) Dauer development: To assay dauer
larva entry, three L4 animals were incubated at 25 °C until the F2/F3
progeny had been starved for at least five days. Animals were washed
from plates using 1% SDS in de-ionized HoO for 30 min. Dauer larvae
were identified by observing their thrashing and re-plated onto plates
containing food to assay dauer exit. Constitutive dauer entry was
scored by testing animals from plates with food for the presence of
dauer larvae isolated after SDS treatment as described above (n= 50).

Supporting Information

Table S1. Deletion Alleles Described in This Study
Found at doi:10.1371/journal.pgen.0030215.5st001 (61 KB XLS).

Table S2. Rescue of Defecation Defect of mir-240 mir-786 Mutants
Found at doi:10.1371/journal.pgen.0030215.5t002 (35 KB XLS).

Table S3. Normal Induction of 1° and 2° Fates in the Pn.ps of mir-61
and mir-247 Mutants

Found at doi:10.1371/journal. pgen.0030215.5t003 (37 KB XLS).

Accession Numbers

The miRNA sequences discussed in this paper can be found in the
miRNA Registry (http:/lwww.sanger.ac.uk/Software/Rfam/mirna/index.
shtml). The C. elegans miRNA genes, their genomic location and
deletion allele information can de accessed directly from WormBase
(http:/lwww.wormbase.org) [107].
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