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ABSTRACT Biological robustness, the ability of an organism to maintain a steady-state output as genetic or environmental inputs
change, is critical for proper development. MicroRNAs have been implicated in biological robustness mechanisms through their post-
transcriptional regulation of genes and gene networks. Previous research has illustrated examples of microRNAs promoting robustness
as part of feedback loops and genetic switches and by buffering noisy gene expression resulting from environmental and/or internal
changes. Here we show that the evolutionarily conserved microRNAs mir-34 and mir-83 (homolog of mammalian mir-29) contribute to
the robust migration pattern of the distal tip cells in Caenorhabditis elegans by specifically protecting against stress from temperature
changes. Furthermore, our results indicate that mir-34 and mir-83 may modulate the integrin signaling involved in distal tip cell
migration by potentially targeting the GTPase cdc-42 and the beta-integrin pat-3. Our findings suggest a role for mir-34 and mir-
83 in integrin-controlled cell migrations that may be conserved through higher organisms. They also provide yet another example of
microRNA-based developmental robustness in response to a specific environmental stress, rapid temperature fluctuations.
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THE ability of a living system to maintain a steady-state
output in the face of environmental and physiological

stresses is referred to as biological robustness (Kitano 2004).
Organisms must be able to compensate for adverse changes
in gene expression caused by environmental stresses and
internal gene expression noise if development is to proceed
unchanged. The nematode Caenorhabditis elegans is a useful
model for studying such robustness. C. elegans development
has been mapped to a cell-by-cell level, such that we know
exactly when cell divisions occur and what the fate of each
cell is (Sulston 1976; Sulston and Horvitz 1977; Kimble and
Hirsh 1979; Sulston et al. 1983). There is also extensive
research on the worm’s responses to stress, including
stress-induced alternative larval developmental choices such

as stage-specific diapause (Baugh and Sternberg 2006; Fu-
kuyama et al. 2006; Ruaud and Bessereau 2006; Schindler
et al. 2014) and proceeding to the dauer larvae stage, an
alternative third larval stage that allows C. elegans to
lengthen their lifespan and survive food deprivation or heat
stress (Cassada and Russell 1975; Liu et al. 1995).

MicroRNAs (miRNAs) are single-stranded RNAs of �22
nucleotides that negatively regulate the translation of their
target messenger RNAs (mRNAs) by binding to their 39 un-
translated region (39 UTR) as part of a protein–RNA com-
plex called the miRNA-induced silencing complex (miRISC).
Target recognition is determined by the miRNA’s seed se-
quence, nucleotides two through seven (reviewed in Ambros
2004; Bartel 2004). miRNAs with the same seed sequence
can presumably regulate the same target mRNAs and are
grouped together within a miRNA family (reviewed in Bartel
2009). In addition to being regulated by multiple members
of a miRNA family, an mRNA can be cotargeted by multiple
distinct miRNAs families, if it contains the corresponding
distinct seed-complementary sites. Such interfamily and
intrafamily cotargeting is considered one reason why
most single miRNA gene deletion mutants in C. elegans do
not display apparent phenotypes; although one negative
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regulator is deleted, the target mRNAs in question remain
under the regulation of additional, functionally redundant
miRNAs (Miska et al. 2007; Alvarez-Saavedra and Horvitz
2010). Findings reported by the Abbott lab exemplified this
phenomenon (Brenner et al. 2010). They screened for de-
velopmental phenotypes resulting from miRNA deletions in
genetically sensitized backgrounds, in which the miRNA-
specific argonaute protein alg-1 was no longer functional.
In the alg-1 mutant background, overall miRNA production
is partially compromised, such that the additional deletion
of an otherwise redundant single miRNA can result in target
deregulation and visible phenotypes.

In their study, the Abbott lab members identified six
miRNAs involved in gonad morphogenesis (Brenner et al.
2010), a normally robust developmental process that is de-
pendent on the migration of two distal tip cells (DTCs)
(reviewed in Wong and Schwarzbauer 2012). One of these
miRNAs included mir-83, a miRNA that is highly conserved
in animals, including mammals (known as mir-29, Support-
ing Information, Figure S1) (Lagos-Quintana et al. 2001,
2002; Lau 2001; Mourelatos et al. 2002; Dostie et al.
2003; Lim et al. 2003; Lim 2003; Michael et al. 2003; Suh
et al. 2004; Poy et al. 2004; Landgraf et al. 2007; Lui et al.
2007). Mammalianmir-29 has been previously implicated in
regulating cellular proliferation, differentiation, apoptosis,
and the extracellular matrix (reviewed in Boominathan
2010; Kriegel et al. 2012). To better understand how mir-83
functions, we set out to determine its mRNA targets and
miRNA coregulators in C. elegans. Using mirWIP (Hammell
et al. 2008), we noticed an overlap between the predicted
mRNA targets for mir-83 and mir-34, another miRNA that is
conserved between nematodes and mammals (Figure S1, Ta-
ble S1) (Lau 2001; Ambros et al. 2003; Grad et al. 2003;
Houbaviy et al. 2003; Lim et al. 2003; Lim 2003; Landgraf
et al. 2007).mir-34 has been shown to have tumor suppressor
activity in mammalian systems. There, its transcription is ac-
tivated by p53 and it functions to reinforce p53 negative reg-
ulation (reviewed in He et al. 2007; Yamakuchi and
Lowenstein 2009; Hermeking 2009; Rokavec et al. 2014).

To further understand the roles of mir-83 and mir-34, we
tested for genetic redundancy by creating the double mutant
and looking at developmental phenotypes. We also identi-
fied potential targets of mir-34 and mir-83 by tests of ge-
netic suppression. mir-83(n4638); mir-34(gk437) double
mutants display a defect in gonad morphogenesis. In addi-
tion, this defect reflects a loss of developmental robustness;
the mir-83(n4638); mir-34(gk437) phenotype is signifi-
cantly enhanced in response to temperature changes but
not by other environmental stresses that we tested. Based
on our results, we conclude that mir-34 and mir-83 function
together to help create or maintain robust function of the
genetic network controlling gonad morphogenesis, such
that the development of this important organ is protected
from the temperature changes C. elegans may encounter,
either the rapid oscillations tested here or subtler changes
experienced in the wild. Furthermore, we observed that

mir-83(n4638); mir-34(gk437) mutants have a decreased
lifespan and decreased fecundity, suggesting that the loss
of these two miRNAs has repercussions for the biological
fitness of the animals.

Materials and Methods

C. elegans strains

The C. elegans Bristol N2 strain was used as wild type in the
study (Brenner 1974). Additional strains are listed in Table
S2. Both the n4638 and gk437 alleles were backcrossed to
N2 four times upon receipt. The VT2595 strain was used as
the mir-83(n4638); mir-34(gk437) double mutant except
when VT3289 is explicitly discussed in Figure 2C.

C. elegans maintenance

Strains were maintained using standard procedures on
nematode growth media (NGM) plates seeded with Escher-
ichia coli strain HB101 (Brenner 1974), unless explicitly
stated as being raised on OP50. Strains were raised at 20�
unless otherwise stated when temperature was oscillated.

Sequence alignments, target prediction, and
statistical significance

MicroRNA sequences were supplied by miRBase (Lagos-
Quintana et al. 2001; Lau 2001; Lagos-Quintana et al.
2002; Mourelatos et al. 2002; Ambros et al. 2003; Aravin
et al. 2003; Dostie et al. 2003; Grad et al. 2003; Houbaviy
et al. 2003; Lim et al. 2003; Lim 2003; Michael et al. 2003;
Sempere et al. 2003; Griffiths-Jones 2004; Poy et al. 2004;
Suh et al. 2004; Griffiths-Jones et al. 2006, 2008; Landgraf
et al. 2007; Lui et al. 2007; Kozomara and Griffiths-Jones
2011, 2014) and aligned by eye. Predicted targets were
identified using mirWIP (Hammell et al. 2008). Throughout
the manuscript, three significance asterisks (***) are used
for a P-value of #0.005, two (**) for a P-value .0.005 and
#0.01, and one (*) for a P-value .0.01 and #0.05.

Migration defective phenotype scoring

Hypochlorite treatment (Stiernagle 2006) was used to iso-
late embryos. Where noted, synchronized populations were
created by allowing embryos to hatch in M9 buffer for �24
hr (Johnson et al. 1984). Embryos or starved L1’s were then
plated on HB101-seeded NGM plates and raised to adult-
hood in the temperature scheme noted. Day one adults were
paralyzed in 100 mM levamisole, mounted on 2% agarose
pads, and scored using a Zeiss Axioskop differential inter-
ference contrast (DIC) microscope and a 363 objective. A
two-proportion z-test was used to determine significant dif-
ferences between counts except where triplicates are pre-
sented. In such cases mean values were compared using
an unpaired t-test performed by PRISM.

Temperature oscillations

Temperature oscillations were performed using modified MJ
Research Programable Thermocyclers. First, the Thermocyclers’
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lids were removed. Next, a 0.25-inch-thick aluminum plate
was attached to the heat block using silicone-based thermal
conductive grease. Original lids were replaced by insulating
covers constructed out of styrofoam. HB101-seeded NGM
plates containing worms were placed inside the modified
device, in contact with the aluminum plate. To assess the
thermal dynamics of the system, a thermometer was embed-
ded in an NGM plate and the temperature of the agar was
monitored during programmed temperature cycles. We ob-
served that the temperature of NGM plates did cycle in ac-
cordance with the Thermocycler program, although not as
quickly as the heat block itself; we observed an �15- to 30-
sec delay as the NGM cools or heats. Stated temperature
cycles refer to the program run by the Thermocycler.

Electron microscopy

N2 and mir-83(n4638) IV; mir-34(gk437) X embryos were
isolated using hypochlorite treatment, hatched in M9 buffer
for �24 hr and plated as synchronized L1’s on HB101-
seeded NGM plates. Worms were raised with temperature
oscillations: 20� for 16 hr (15� for 15 min, 25� for 15 min,
repeat three additional times), 20� until young adulthood.
Worms were fixed and prepared for electron microscopy as
previously described (Irazoqui et al. 2010) except they were
cut below the pharynx rather than in half to preserve gonad
morphology. Electron microscopy work was performed by
the University of Massachusetts Medical School Electron Mi-
croscopy Core Facility.

Cloning and transgenics

Constructs were created using Life Technologies Gateway
Cloning. Except where otherwise stated, gene fragments
were first amplified from N2 genomic DNA using the primers
listed in Table S3. PCR was next used to add the proper att
sequences such that fragments could be moved into the
appropriate Gateway DONR vector, as described in the Gate-
way Protocol. For the mir-34 promoter, the 5-kb promoter
was digested from a separate plasmid and ligated to a mod-
ified 476p5Emcs (a gift from Nathan Lawson’s lab, modified
to remove unnecessary SalI cut sites) to add the necessary
att sites. For mutated 39 UTRs, DNA fragments of the desired
sequence were created de novo by GeneWiz. The constructed
DONR vectors, along with two commercially available vec-
tors, were then used for transgene construction as described
in the Gateway Protocol (Table S4). The destination vectors
were developed for the Mos1-mediated single-copy insertion
technique (Frøkjaer-Jensen et al. 2008), which was used to
generate transgenic strains (Table S2). Multicopy arrays
were generated for cdc-42 and pat-3 GFP/mCherry report-
ers. mir-83(n4638) IV; mir-34(gk437) X males were first
crossed to EG6701 to create a unc-119(ed3) III; mir-
83(n4638) IV; mir-34(gk437) X strain (VT3087). VT3087
was subsequently injected with a mix of pBluescript SK+
(30 ng/ml), pIF9 (15 ng/ml), pCFJ150 (30 ng/ml), pCFJ210
(30 ng/ml), and either pSLB054 (3 ng/ml) and pSLB056
(3 ng/ml) or pSLB071 (3 ng/ml) and pSLB075 (3 ng/ml).

Array maEx246 was generated from the pSLB054- and
pSLB056-containing injection mix, while array maEx247
was made from the pSLB071 and pSLB075 mix. The array
carrying strains, VT3118 (for maEx246) and VT3145 (for
maEx247), were crossed to N2 males to cross out the mir-
83(n4638) and mir-34(gk437) deletions, generating strains
VT3136 and VT3178, respectively.

RNAi

RNA-mediated interference (RNAi) was performed by rais-
ing animals on dsRNA-producing E. coli as described in
Kamath et al. (2001). Synchronized L1’s were placed on
cdc-42 RNAi food, pat-3 RNAi food, or empty vector control
food, and raised to young adulthood with the temperature
scheme stated. Animals were scored as previously described.

Target reporter scoring

Hypochlorite treatment was used to isolate embryos, which
were hatch in M9 to generate synchronized L1’s. Worms
were plated on HB101-seeded NGM plates and raised with
temperature oscillations: 20� for 16 hr (15� for 15 min, 25�
for 15 min, repeat three additional times), 20� until time of
scoring. L1 animals were scored starting 18 hr postplating,
immediately following temperature oscillations. L3 animals
were scored starting 43 hr postplating, shortly after the molt
from L2 to L3. Adults were scored starting 67 hr postplating,
after egg laying had commenced.

Worms were suspended in 100 mM levamisole, mounted on
2% agarose pads, and scored using a Leica TCS SPE confocal
microscope. For cdc-42 reporters, DTCs were first identified in
the DIC setting by eye using the 363 objective. The confocal
microscopy setting was subsequently used for imaging and
quantifying the mean value florescence of each channel for
a DTC using the Leica LAS AF software. For pat-3 reporters,
the 310 objective was used to observe whole animals. A 30-
step z-series was taken per worm. The Leica AF software was
used to quantify mean value fluorescence for each channel
using the z-stack maximum projection. Datasets were compared
using an unpaired t-test performed by PRISM.

Brood size counts

N2 and mir-83(n4638) IV; mir-34(gk437) X embryos were
isolated using hypochlorite treatment and left in M9 buffer
for �24 hr to hatch. Arrested L1’s were then plated on
HB101-seeded NGM plates and either raised at 20� contin-
uously or with temperature oscillations from hour 16 to
hour 18 postplating [labeled “cycled”—20� for 16 hr (15�
for 15 min, 25� for 15 min, repeat three additional times),
20� until death]. Worms were individually plated as L4’s,
and the number of live offspring were counted from the start
of egg laying until its end. Mean values were compared
using an unpaired t-test performed by PRISM.

Mating assays

N2 and mir-83(n4638) IV; mir-34(gk437) X embryos were
isolated using hypochlorite treatment and left in M9 buffer

mir-34 and mir-83 in DTC Migrations 1203

http://www.wormbase.org/db/get?name=HB101;class=Strain
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=WBGene00003311;class=Gene
http://www.wormbase.org/db/get?name=WBVar00090888;class=Variation
http://www.wormbase.org/db/get?name=WBGene00003262;class=Gene
http://www.wormbase.org/db/get?name=WBVar00145843;class=Variation
http://www.wormbase.org/db/get?name=HB101;class=Strain
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.genetics.org/content/suppl/2015/06/15/genetics.115.179184.DC1/TableS3.pdf
http://www.wormbase.org/db/get?name=WBGene00003262;class=Gene
http://www.genetics.org/content/suppl/2015/06/15/genetics.115.179184.DC1/TableS4.pdf
http://www.genetics.org/content/suppl/2015/06/15/genetics.115.179184.DC1/TableS2.pdf
http://www.wormbase.org/db/get?name=WBGene00000390;class=Gene
http://www.wormbase.org/db/get?name=WBGene00003930;class=Gene
http://www.wormbase.org/db/get?name=WBGene00003311;class=Gene
http://www.wormbase.org/db/get?name=WBVar00090888;class=Variation
http://www.wormbase.org/db/get?name=WBGene00003262;class=Gene
http://www.wormbase.org/db/get?name=WBVar00145843;class=Variation
http://www.wormbase.org/db/get?name=EG6701;class=Strain
http://www.wormbase.org/db/get?name=WBGene00006843;class=Gene
http://www.wormbase.org/db/get?name=WBVar00145093;class=Variation
http://www.wormbase.org/db/get?name=WBGene00003311;class=Gene
http://www.wormbase.org/db/get?name=WBGene00003311;class=Gene
http://www.wormbase.org/db/get?name=WBVar00090888;class=Variation
http://www.wormbase.org/db/get?name=WBGene00003262;class=Gene
http://www.wormbase.org/db/get?name=WBVar00145843;class=Variation
http://www.wormbase.org/db/get?name=VT3118;class=Strain
http://www.wormbase.org/db/get?name=VT3145;class=Strain
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=WBGene00003311;class=Gene
http://www.wormbase.org/db/get?name=WBGene00003311;class=Gene
http://www.wormbase.org/db/get?name=WBVar00090888;class=Variation
http://www.wormbase.org/db/get?name=WBGene00003262;class=Gene
http://www.wormbase.org/db/get?name=WBVar00145843;class=Variation
http://www.wormbase.org/db/get?name=VT3136;class=Strain
http://www.wormbase.org/db/get?name=VT3178;class=Strain
http://www.wormbase.org/db/get?name=WBGene00000390;class=Gene
http://www.wormbase.org/db/get?name=WBGene00003930;class=Gene
http://www.wormbase.org/db/get?name=HB101;class=Strain
http://www.wormbase.org/db/get?name=WBGene00000390;class=Gene
http://www.wormbase.org/db/get?name=WBGene00003930;class=Gene
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=WBGene00003311;class=Gene
http://www.wormbase.org/db/get?name=WBVar00090888;class=Variation
http://www.wormbase.org/db/get?name=WBGene00003262;class=Gene
http://www.wormbase.org/db/get?name=WBVar00145843;class=Variation
http://www.wormbase.org/db/get?name=HB101;class=Strain
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.wormbase.org/db/get?name=WBGene00003311;class=Gene
http://www.wormbase.org/db/get?name=WBVar00090888;class=Variation
http://www.wormbase.org/db/get?name=WBGene00003262;class=Gene
http://www.wormbase.org/db/get?name=WBVar00145843;class=Variation


for �24 hr to hatch. Arrested L1’s were then plated on
HB101-seeded NGM plates and either raised at 20� contin-
uously or with temperature oscillations from hour 16 to
hour 18 postplating [labeled “cycled”—20� for 16 hr (15�
for 15 min, 25� for 15 min, repeat three additional times),
20� until death]. Once they reached adulthood, hermaphro-
dites were transferred daily away from progeny until the
ability to lay eggs was exhausted (day four of adulthood).
Each hermaphrodite was then moved to an individual plate,
to which four 1-day-old adult N2 males were added. Ani-
mals were allowed to mate for 3 days, at which point the
males were removed. The total number of offspring that
hatched were counted for each hermaphrodite from the start
of the assay until its death.

Lifespan assays

Survival assays were performed similarly to previously
described (Kenyon et al. 1993). N2 and mir-83(n4638) IV;
mir-34(gk437) X embryos were isolated using hypochlorite
treatment and left in M9 buffer for �24 hr to hatch. Arrested
L1’s were then plated on HB101-seeded NGM plates and
either raised at 20� continuously or with temperature oscil-
lations from hour 16 to hour 18 postplating [labeled
“cycled”—20� for 16 hr (15� for 15 min, 25� for 15 min,
repeat three additional times), 20� until death]. To track
survival, 100 worms per replicate and three replicated per
condition were moved to a new HB101-seeded NGM plate
as L4’s. Worms were transferred to a new plate daily during
the course of the assay to avoid overcrowding from the off-
spring. Worms were scored as alive or dead based on re-
action to a gentle nose prod using a standard worm pick.
Animals were tracked until their death. Any worms that died
as a consequence of crawling up the side of the plate were
removed from the assay. Replicates were used to calculate
percent survival and the standard deviation for each day.
Mean values for individual days were compared using
a two sample t-test for means.

Additional stresses

Animals was raised on NGM plates containing 0.03%
sodium arsenite to induce oxidative stress (Sahu et al.
2013). Incubation in 1% SDS for 30 min was used to isolate
dauer animals from starved plates (Stiernagle 2006). Ani-
mals were raised on Pseudomonas auruginosa PA14 plates as
previously described (Powell and Ausubel 2008).

Results

Improper distal tip cell migration paths in mir-83(n4638);
mir-34(gk437) mutants

The shape of the C. elegans adult hermaphrodite gonad is
determined by the migration of two DTCs, somatic gonadal
cells at the tip of each gonad arm that drag the proliferative
portion of the gonad with them as they migrate during the
second through fourth larval stages of hermaphrodite de-
velopment (Kimble and Hirsh 1979; Kimble and White

1981; Hedgecock et al. 1987). Both DTCs are born near
the midbody during the first larval stage and begin to mi-
grate along the ventral body wall muscles toward the head
and tail during the second larval stage, referred to as phase
1 of migration (Hirsh et al. 1976; Kimble and Hirsh 1979;
Kimble and White 1981). During phase 2, DTCs first turn
dorsally to migrate from the ventral to the dorsal body wall
muscle, crossing the hypodermis in the process (Hedgecock
et al. 1987). A second turn is required to continue migration
along the dorsal body wall muscles and return to the mid-
body (phase 3), creating two U-shaped gonad arms (Figure
1A) (Hirsh et al. 1976; Kimble and Hirsh 1979; Hedgecock
et al. 1987). The final shape of the gonad arms can be used
to deduce the path taken by each DTC. In a fraction of mir-
83(n4638); mir-34(gk437) mutants (26% at 20�, quantified
in Figure 2), anterior and posterior gonad arms appear dis-
placed at various positions, improperly crossing the dorsal/
ventral axis (Figure 1B). These misplaced gonad arms sug-
gest DTCs wandered from the proper path during phase 1
and/or phase 3 of migration and often migrated too far and
past the developing vulva. The penetrance of this overexten-
sion phenotype was highly variable and overextension was
observed to occur either with or without wandering during
phase 1 and/or phase 3. Unlike some classes of C. elegans
migration mutants, DTCs in mir-83(n4638); mir-34(gk437)
mutants execute both their first (dorsal) and second (ante-
rior/posterior) turns at the proper positions in the animals
and at the proper times in development. The migration de-
fect of these mutants therefore reflects a defect in the precise
pathfinding of the DTCs as they migrate longitudinally along
the ventral or dorsal muscle. To score this phenotype we
categorized gonad arms as either migration defective or nor-
mal. Gonad arms were categorized as migration defective if
their abnormal shape indicated that the DTC had improperly
crossed the dorsal/ventral axis during its migration, or that
the DTC migrated completely past the vulva before stopping.
Previously published findings indicated a low level of migra-
tion defects in the N2 strain (Peters et al. 2013). These in-
cluded such phenotypes as DTCs stopping slightly short of
the vulva and a slight ventralward “dip” of the DTCs when
migration ceases. We observed such phenotypes as well, but
due to their occurrence in N2 we classified such cases as
within normal variation and did not score them as migration
defects. It is also important to note that in the previously
mentioned study (Peters et al. 2013), strains were raised at
23� rather than 20�.

DTC wandering results in displaced gonad arms, which
is reflected in a reorganization of the internal organs.
To visualize this reorganization in mir-83(n4638); mir-
34(gk437) mutants, we performed electron microscopy on
cross-sections of adult worms. We first collected �20 mir-
83(n4638); mir-34(gk437) worms whose anterior arm dis-
played a migration defect. These mutants and age-matched
N2’s were fixed and processed for electron microscopy. As
previously described, in N2 worms the intestine spans the
dorsal/ventral axis (Figure 1C) (Hall and Altun 2008). The
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oocyte-containing proximal gonad is located ventrally while
the distal gonad is dorsal (Hall and Altun 2008). For a DTC
to wander from the appropriate migration path, it must dis-
place the intestine. In addition, the somatic gonad itself will
be displaced as it trails behind the migrating DTC. This
rearrangement of internal organs, with the intestine, distal
gonad arm, and proximal gonad arm all displaced, was vis-
ible in both of the two mir-83(n4638); mir-34(gk437)
mutants sectioned and visualized (Figure 1C).

The penetrance of the migration defect is significantly
enhanced by oscillating temperature

We first sought to quantify the penetrance of the migration
defect in mir-83(n4638); mir-34(gk437) worms raised in
standard laboratory conditions, namely on E. coli-seeded
NGM plates kept at 20� (Brenner 1974). As expected, the
DTCs migrate properly in N2 worms in the majority of
worms (2 6 2% migration defective, performed in triplicate,
Figure 2A). Both mir-34(gk437) and mir-83(n4638) single
mutant populations display migration defects at a low fre-
quency, 10.67 6 1.15% and 8 6 0%, respectively. The phe-
notype’s penetrance is significantly enhanced to 266 7.21%
in the mir-83(n4638); mir-34(gk437) double mutant (P #

0.05, unpaired t-test), suggesting that the two miRNAs con-
tribute partially redundant functions in the context of DTC
migration.

Due to the low penetrance of the phenotype in mir-
83(n4638); mir-34(gk437) double mutants (Figure 2A),

we reasoned that the functions of these miRNAs in DTC
migration could be relatively unimportant under standard
laboratory conditions, but perhaps more critical under
stressful conditions. Therefore, we tested for enhancement
of the DTC migration phenotype in worms exposed to vari-
ous stresses. We observed no change in the penetrance of
the phenotype when mutants were exposed continuously
throughout development to high temperature (25�) or low
temperature (15�) or to a diet of pathogenic P. aeruginosa,
oxidative stress (0.03% arsenic), or starvation during early
larval stages to induce dauer formation (Table S5). How-
ever, an enhanced phenotype was observed when worms
developed under a changing temperature regimen (Figure
2B), a phenomenon previously observed for mir-7 Drosoph-
ilamutants in the context of Drosophila eye development (Li
et al. 2009). Semisynchronized populations of developing
larvae were exposed to a regimen of temperature changes
every 15 min—first from 15� to 25�, and then back to 15�,
and so on. The DTC migrations of N2 worms were unaf-
fected by temperature oscillations (0 6 0%). All three mu-
tant strains [mir-34(gk437) and mir-83(n4638) single
mutants and the mir-83(n4638); mir-34(gk437) double mu-
tant] showed an enhanced penetrance of the DTC migration
defective phenotype under oscillating temperature com-
pared to constant temperature (20�); from 10.67 6 1.15%
to 28 6 5.29% for mir-34(gk437), from 8 6 0% to 16.67 6
4.16% for mir-83(n4638), and from 26 6 7.21% to 62.67 6
4.16% for mir-83(n4638); mir-34(gk437). A similar pattern

Figure 1 mir-83(n4638); mir-34(gk437) mutants
have gonad migration defects. (A) The C. elegans
gonad consists of two U-shaped gonad arms. The
shape of each arm is created by the migration path
of the DTC. The two DTCs are initially located ven-
trally near the midbody. Each DTC migrates away
from the midbody before turning dorsally, migrat-
ing to the dorsal body wall muscle, and then mi-
grating back toward the midbody. The path of
each DTC can be inferred by the location of the
respective gonad arm. Body wall muscle in red,
germline in gray, DTCs in black, uterus desig-
nated with “U.” (B) mir-83(n4638); mir-34(gk437)
mutants have a gonad migration defect. The im-
proper location of the mature gonad arms implies
that DTCs did not migrate along the normal path.
In the arm pictured (bottom), the DTC (black arrow)
migrated too far, passing the vulva (white asterisk),
and is displaced ventrally, as compared to N2 (top).
Penetrance quantified in Figure 2. (C) Improper
DTC migration causes a rearrangement of internal
organs, due to space constraints. In N2 worms, the
intestine is positioned laterally with respect to the
dorsal/ventral axis (indicated by a white, dashed
line), and the proximal and distal segments of the
gonad are positioned ventrally and dorsally, respec-
tively, on the other side from the intestine. In the
mir-83(n4638); mir-34(gk437) worm shown here,
the displaced gonad caused a displacement of the
intestine. Black arrowheads point to the adult lat-
eral alae, which are positioned on the left and right
sides of the animal.
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was observed for animals grown on OP50 rather than
HB101 E. coli, suggesting that the migration defect and its
enhancement by oscillating temperature are independent of
food source (Figure S2). We also examined a second mir-34
null allele, n4276, and obtained similar results as those for
gk437 (Figure S3).

To confirm that the DTC migration defects of mir-34 and
mir-83 mutants are a consequence of the loss of the mir-34
and mir-83 genes, we generated single-copy integrated res-
cuing transgenes in their respective single mutant (Table
S2). Both the mir-34 transgene, maIs387, and the mir-83
transgene, maIs391, rescue the migration defects of their
respective single mutant (Figure 2C). Although this finding
supports the conclusion that the migration defects can be
explicitly attributed to the mir-34 and mir-83 loss of func-
tion, a caveat remained that the migration defect was due to
background mutations, outside the mir-34 or mir-83 loci,
that had been present in the single mutants and were
segregated away during construction of the transgene-
containing strains. In this scenario, the hypothetical back-
ground mutations would have been maintained during the
construction of the mir-83(n4638); mir-34(gk437) double
mutant, strain VT2595. To address this caveat, we crossed
the maIs387; mir-34(gk437) and maIs391; mir-83(n4638)
strains together to generate a new doubly mutant mir-
83(n4638); mir-34(gk437) strain (VT3289) lacking both
transgenes and a sibling doubly mutant strain carrying both

transgenes (VT3294) (Figure 2C). We observed that VT3289
exhibited a 56% penetrance of migration defective, which is not
statistically different from 62%migration defective exhibited by
the original mir-83(n4638); mir-34(gk437) double mutant,
VT2595 (Figure 2C, two-proportion z-test, P . 0.05). If the
migration defect had been due to background mutations rather
than the mir-34 and mir-83 deletions we would not expect the
newly isolated double to have the defect. As expected, the
double mutant carrying both rescue constructs, maIs387;
maIs391; mir-83(n4638); mir-34(gk437), appears mostly nor-
mal (4% migration defective).

The above results suggest that DTC migrations may be
inherently sensitive to unstable temperature, and that the
activity of mir-34 and mir-83 helps protect the genetic net-
work controlling this migration from environmental temper-
ature changes. Although the penetrance of the phenotype
was increased in mir-83(n4638); mir-34(gk437) mutants
worms experiencing oscillating temperatures (from 26%
at constant 20� to 62.67% in oscillating temperatures),
the migration defect is still not fully penetrant in mir-
83(n4638); mir-34(gk437) mutants, even with tempera-
ture oscillations. It was previously shown that for alg-1
dominant-negative alleles ma192 and ma202, respectively
71% and 73% of worms, have DTC migration defects, strongly
suggesting that other miRNAs are involved in the regula-
tion of DTC migrations (Zinovyeva et al. 2014). Therefore
the additional miRNAs implicated in gonad migration by

Figure 2 The gonad migration defect is
significantly enhanced in mir-83(n4638);
mir-34(gk437) double mutants. Gonad
arm morphology in young adult hermaph-
rodites was used to score for defects in
DTC migrations during larval development
at (A) 20� or (B) under an oscillating tem-
perature regimen (15� for 15 min, 25� for
15 min, repeated from plating eggs until
young adulthood). (C) Integrated trans-
genes expressing either mir-34, maIs387
or mir-83, maIs391, under their natural
promoters rescue single mutants. Both
VT3289 and VT3294 maIs387; maIs391;
mir-83(n4638); mir-34(gk437) were pro-
duced by crossing VT3106 maIs387; mir-
34(gk437) to VT3110 maIs391; mir-83
(n4638), shown in D. As expected, the
newly isolated mir-83(n4638); mir-34
(gk437) double mutant, VT3289, displays
the migration defect while the double mu-
tant carrying both rescue transgenes,
VT3294, appears normal. Significance
asterisks compare to N2. Penetrance in
VT2595 is not significantly different from
penetrance in VT3289. Animals were cy-
cled as described in B. ***P-value #

0.005, *0.01 , P # 0.05, not significant
(n.s.) if P . 0.05.
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the Abbott lab (Brenner et al. 2010) were examined to
see if being raised in changing temperatures enhanced
any of the single mutants as it did for mir-34(gk437)
and mir-83(n4638) mutants. We found that only the
mir-259(n4106) migration defect appears to be enhanced by
oscillating temperatures (Figure 3A), although the enhancement
is not significant (P = 0.086, two-proportion z-test). Addi-
tionally, the migration defects exhibited by mir-259(n4106)
mutants are similar to those of mir-34(gk437) and mir-
83(n4638) single and double mutants; DTCs improperly
cross the dorsal/ventral axis during phase 1 and phase 3
of migration and migrate past the vulva. However, the
mir-259 deletion does not enhance the penetrance of these
defects in a triple mutant mir-83(n4638); mir-259(n4106);
mir-34(gk437) compared to themir-83(n4638);mir-34(gk437)
double mutant (Figure 3B, P $ 0.05, two-proportion z-test).
This suggests that, although mir-259 regulates targets in-
volved in DTC migration in a manner that is sensitive to
temperature changes and could be involved in the same or
a similar process as mir-34 and mir-83, mir-259 appears to
not regulate the same targets as mir-34 and mir-83. If the
three miRNAs were acting in parallel on the same set of
mRNA targets, we would expect an elevated penetrance
of the phenotype upon removal of mir-259 from the dou-
ble mutant as the target mRNAs in question would be
further derepressed. One caveat regarding this conclu-
sion could be that the lack of enhancement seen in the
mir-83(n4638); mir-259(n4106); mir-34(gk437) triple
compared to the mir-83(n4638); mir-34(gk437) double
(Figure 3B) might reflect common targets that were fully
derepressed in the mir-83(n4638); mir-34(gk437) dou-
ble, such that the loss of an additional regulator had no
effect. In this regard, we note that the migration defect
penetrance in both the mir-259(n4106); mir-34(gk437)
and the mir-83(n4638); mir-259(n4106) double mutants
are weaker than that of the mir-83(n4638); mir-34(gk437)
mutant (Figure 3C, P # 0.005, two-proportion z-test). This
suggests that the relevant mRNA target sets for mir-34 and
mir-83 may overlap more with each other than with mir-259.
For these reasons, we chose to focus on the functionally inter-
acting miRNAs mir-34 and mir-83 for the remainder of this
study.

The temperature sensitivity of DTC migration is
restricted to a 2-hr period during the L1 stage

We next sought to determine if the entire DTC migration
process was temperature sensitive in mir-83(n4638); mir-
34(gk437) mutants, or if there was a more restricted de-
velopmental period during which DTCs are sensitive to
changing temperature in these mutants. Synchronized popu-
lations of N2 and mutant worms were produced by hatching
eggs in the absence of food. L1 larvae arrest in such condi-
tions and will not proceed developing until the reintroduction
of food (Johnson et al. 1984; Baugh 2013). Once food is
reintroduced, it takes the larvae �24 hr at 20� to reach the
first molt into the L2 larval stage. Using the DTC-specific re-

porter, Plag-2::GFP (Siegfried and Kimble 2002), we found
that the DTCs are born �16 to 16.5 hr after the reintroduc-
tion of food (unpublished results) in both N2 and mir-
83(n4638); mir-34(gk437) worms. This agrees with previous
reports for the timing of DTC birth in N2’s (Sulston and
Horvitz 1977; Kimble and Hirsh 1979). By examining the
effects of 2-hr time windows during which the temperature
oscillated between 15� and 25� every 15 min, we found that
the temperature-sensitive period for DTCs overlapped with
the approximate time of their births. When the 2-hr oscillat-
ing temperature regimen occurred before 14 hr of develop-
ment (Figure 4A) or after 20 hr of development (Figure 4C),
mir-83(n4638); mir-34(gk437) mutants displayed the mi-
gration phenotype at a penetrance similar to that seen in
the nonenhanced 20� condition (see Figure 2A). However,
when temperature oscillations occurred from hour 16 to
hour 18 of development (Figure 4B) we observed an en-
hanced penetrance of the phenotype similar in magnitude
to that of animals that had experienced temperature oscil-
lations throughout larval development (see Figure 2B). This
implies that the enhancement observed with temperature
oscillations throughout development likely resulted from
changing temperature in the interval between hour 16 to
hour 18. Indeed, animals that experienced temperature
oscillations throughout most of larval development but ex-
cluding the 2-hr period from hour 16 to hour 18 did not
exhibit phenotypic enhancement (Figure S4).

Our results indicate that cycling between 15� and 25�
captures the full enhancement of the migration phenotype
under the conditions we have tested. Increasing the upper
temperature to 37�, thereby heat shocking the worms in 15-
min increments, did not further enhance the penetrance of
the phenotype (Figure S5). We also found that the pheno-
typic enhancement occurred whether the first temperature
change was a decrease (Figure 4) or an increase (Figure S6)
in temperature and was largely independent of the magni-
tude of the temperature change; 10-degree or 5-degree
changes in temperature resulted in similar phenotype en-
hancement (Figure S7). We observed that a single oscilla-
tion cycle during the hour-16 to hour-18 period was
insufficient to enhance the phenotype (Figure S8), suggest-
ing that multiple cycles are necessary to elicit the stress that
compromises the integrity of gonad morphogenesis in the
absence of mir-34 and mir-83.

Tissue specificity of mir-34 and mir-83

To determine the anatomical site of action of mir-34 and
mir-83 in regulating the integrity of DTC migrations we
generated constructs expressing each of these miRNAs
driven by its natural promoter or by promoters from genes
expressed in the hypodermis (dpy-7), DTCs (lag-2, also
expressed in some vulval cells), gonadal sheath cells (lim-
7), or muscle (myo-3, also expressed in muscle-like sheath
cells 3–5) (Johnstone et al. 1992; Henderson et al. 1994;
Hall et al. 1999; Dupuy et al. 2007; Fox et al. 2007; Ono
et al. 2007). These constructs were built in Mos1-mediated
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single-copy insertion (MosSCI) destination vectors and
were used to generate integrated transgenic lines (Frøkjaer-
Jensen et al. 2008) (Table S2).

As expected, both mir-34 or mir-83 expressed under their
cognate natural promoters rescued the DTC migration de-
fect of the respective single mutants (Table 1 and Table 2,
P # 0.005, two-proportion z-test). mir-34(gk437) and mir-
83(n4638) phenotypes were also rescued to varying degrees
by tissue-specific heterologous promoters. mir-34 expressed
in the DTCs (driven by the lag-2 promoter; Plag-2::mir-34)
partially rescued the mir-34(gk437) defect, from 28.3 to
11.7% (Table 1, P # 0.05, two-proportion z-test). The lack
of full rescue could be due to a difference in expression
levels and/or a requirement for mir-34 in more than one
tissue. mir-83 expressed in either the DTCs (Plag-2::mir-
83) or muscle (Pmyo-3::mir-83), significantly rescued the
migration defect (from 30% in the mutant to 5% in each
rescue line, Table 2, P # 0.005, two-proportion z-test). Po-
tential explanations for this result, where mir-83 appears to
function in either the DTCs or the muscle, are discussed in
the Discussion section.

Mir-34 and mir-83 regulate two key proteins involved in
DTC migrations

Our findings that DTC-specific expression of mir-34 or mir-
83 can rescue the gonad migration defect of mir-34(gk437)
or mir-83(n4638) mutants suggests that mir-34 and mir-83
may regulate a gene or genes whose activity impacts the

fidelity of the DTC migration process, and that the migration
defect reflects abnormal pathfinding by the DTCs during
larval development. An alternative hypothesis, that the dis-
placed gonad arms observed in mutant adults resulted from
the shifting of internal organs after otherwise proper migra-
tions, was tested by examining whether the animals’ move-
ment impacted their gonad morphology. We observed that
the migration-defective phenotype was not affected in ge-
netically paralyzed worms compared to fully active worms,
arguing against a contribution of movement-derived struc-
tural damage as a cause of the migration defect (Figure S9).

To identify potential targets of mir-34 and mir-83 in the
regulation of DTC migration, we tested for suppression of
the phenotype inmir-83(n4638);mir-34(gk437)mutants by
RNAi knockdown of genes predicted by mirWIP (Hammell
et al. 2008) to be targets of both mir-34 and mir-83 (Table
S1), prioritizing genes known to be involved in cell migra-
tions, larval development, or miRNA function. cdc-42 and
pat-3, both expressed in the DTCs and body wall muscle
and known to be involved in their migration (Lee et al.
2001; Cram et al. 2006; Lucanic and Cheng 2008), are pre-
dicted targets of mir-34 and mir-83 and were subsequently
examined.

cdc-42 is a GTPase shown to be downstream of integrin
signaling. Upon activation by integrin, cdc-42 acts to bring
about the actin cytoskeleton rearrangements associated with
cell migration (Van Aelst and D’Souza-Schorey 1997; Price
et al. 1998; Ren et al. 1999). Previously it has been shown

Figure 3 Other miRNAs implicated in go-
nad migration function in separate path-
ways. (A) Previously implicated miRNA
mutants were tested for enhancement of
gonad migration defects by temperature
oscillations. Worms were either main-
tained at a steady 20� throughout devel-
opment or were subjected to oscillating
temperature (15� for 15 min, 25� for
15 min) throughout development (“cy-
cled”). (B) The mir-259(n4106) mutation
was crossed into the mir-83(n4638); mir-
34(gk437) strain to assess potential genetic
interactions. Worms were subjected to an
oscillating temperature regimen (15� for
15 min, 25� for 15 min, repeated until
young adulthood). The difference in migra-
tion defective (mig) phenotype penetrance
betweenmir-83(n4638); mir-34(gk437) and
mir-83(n4638); mir-259(n4106); mir-34
(gk437) is not significant. ***P-value #

0.005. (C) Phenotype penetrance for the
mir-259(n4106) mutation in combination
with either the mir-34(gk437) mutation or
the mir-83(n4638) mutation was compared
to that in the mir-83(n4638); mir-34(gk437)
double mutant. Worms were raised at 20�
or cycled during the temperature-sensitive
period discussed in Figure 4 [20� for 16 hr
(15� for 15 min, 25� for 15 min, repeated
three additional times), 20� until young
adulthood]. ***P-value # 0.005.
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that when a constitutively active allele of cdc-42 (unable to
hydrolyze GTP to GDP) is expressed in the DTCs, those DTCs
display pathfinding defects (Peters et al. 2013). If cdc-42 is
a direct target of mir-34 and mir-83, we would expect its
expression to be elevated in animals mutant for these two
miRNAs. Therefore, we hypothesized that by lowering the
level of cdc-42 in mir-83(n4638); mir-34(gk437) mutants
we could suppress the gonad migration defect. This is in fact
the case. The cdc-42 null allele gk388 deletes a portion
of cdc-42’s 59 UTR, the first exon, and a portion of the first
intron (Kimata et al. 2012). mir-83(n4638); mir-34(gk437)
mutants heterozygous for the cdc-42(gk388) allele were sig-
nificantly rescued, from 53% of the population displaying
the gonad migration-defective phenotype to 23% (Figure
5A, P # 0.005, two-proportion z-test). Mutants containing
one copy of gk388 and wild-type copies of both mir-34 and
mir-83 also are migration defective (wandering in phase 1
and/or phase 3) at a low penetrance (10% of the popula-
tion). This is expected as cdc-42 is a critical regulator of the
integrin signaling network (Van Aelst and D’Souza-Schorey
1997; Price et al. 1998; Ren et al. 1999). We confirmed this
suppression using RNAi-induced knockdown of cdc-42 (Fig-
ure 5B); cdc-42(RNAi) in a mir-83(n4638); mir-34(gk437)
mutant significantly suppressed the penetrance of the migra-
tion defect from 70 to 37% (P # 0.005, two-proportion
z-test). N2 worms on cdc-42 RNAi food exhibit wandering

phenotypes similar to that observed in the balanced hetero-
zygote. This result supports the idea that the reduction of
cdc-42 is responsible for the suppression seen in mir-
83(n4638); mir-34(gk437) rather than being the result of
the inclusion of the balancer chromosome mIn1.

C. elegans has one b-integrin gene, pat-3 (Williams and
Waterston 1994; Gettner et al. 1995). Integrin signaling is
the major regulatory network involved in phase 1 and phase
3 of DTC migration (Baum and Garriga 1997; Lee et al.
2001; Cram et al. 2006). Using the pat-3 null allele st564
(Williams and Waterston 1994), we created a strain homo-
zygous for deletions of both mir-34 and mir-83 and carrying
only one functional copy of pat-3. In this case, partial loss of
pat-3 reduced the migration defect from 52 to 25% (Figure
5C, P # 0.005, two-proportion z-test), supporting the con-
clusion that pat-3 overexpression contributes to the migra-
tion defect in mir-83(n4638); mir-34(gk437) mutants. Note
that 18% of worms with one functional copy of pat-3 are
migration defective (we observed wandering during phase 1
and phase 3 and overextension, but no defects in phase 2
turns), indicating that the fidelity of DTC migration may
depend critically on pat-3 dosage. RNAi against pat-3 also
significantly suppressed the migration defect in a mir-
83(n4638); mir-34(gk437) mutant from 65 to 40% (Figure
5D, P # 0.01, two-proportion z-test), confirming that the
reduction of pat-3 is responsible for the suppression.

Figure 4 Temperature oscillations
within a limited 2-hr window cause
the migration defective phenotype en-
hancement in mir-83(n4638); mir-34
(gk437) mutants. The temperature
was oscillated every 15 min for a total
of 2 hr (15� for 15 min, 25� for 15 min,
repeated four times). (A) Temperature
oscillations occurred prior to the birth
of the DTCs (12 to 14 hr after plating
starved L1’s on HB101-seeded NGM
plates). (B) Temperature oscillations oc-
curred over an interval (16 to 18 hr after
plating starved L1’s on HB101) corre-
sponding to the time of DTC birth. (C)
Temperature oscillations occurred after
the birth of the DTCs (20 to 22 hr after
plating starved L1’s on HB101). ***P-
value # 0.005, **0.005 , P # 0.01,
significance asterisks compare N2 to
mir-83(n4638); mir-34(gk437) mutants.
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The suppression in mir-83(n4638); mir-34(gk437) mu-
tant phenotype by genetic reduction of either cdc-42 or
pat-3 activity supports the supposition that cdc-42 and pat-3
function downstream of these miRNAs in the regulation of
DTC migration. The fact that both cdc-42 and pat-3 are pre-
dicted to contain sites for both mir-34 and mir-83 in their 39
UTR sequences strongly suggests direct targeting by these
miRNAs. In an attempt to gather additional data in support
of direct regulation, we constructed a set of nuclear local-
ized mCherry and GFP reporters using the promoters and 39
UTR sequences of each target (see Methods). mCherry was
paired with the wild-type target 39 UTR while GFP was fused
to a 39 UTR where the predicted mir-34 and mir-83 binding
sites were mutated. Specifically, the 39 UTR bases predicted to
be part of the mRNA–miRNA seed base pairing were mutated
to the complementary base, A to T, C to G, G to C, and U to A,
such thatmir-34 andmir-83 loaded miRISCs would no longer
to be able to bind the mutated 39 UTRs. For each wild-type 39
UTR reporter, the corresponding GFP construct with a mu-
tated 39 UTR served as an internal control, as it should not be
subjected to regulation by either miRNA. The mCherry con-
struct, however, should be regulated by both miRNAs and
therefore, should be expressed differently in their presence
or absence. We generated multicopy arrays (single-copy
transgenes were unsuccessful, see Discussion) containing both
constructs in mir-83(n4638); mir-34(gk437) mutants and
crossed these arrays into N2 worms for comparison to the
mutant background. GFP and mCherry fluorescence was sub-
sequently quantified within DTCs or for the whole animal.
We did not observe a difference in the ratio of mCherry to
GFP fluorescence expressed in DTCs for the cdc-42 reporters,
in any of the stages observed (Figure S10A, P $ 0.05, un-
paired t-test).

As for the pat-3 reporters, the results were indicative but
not definitive. Expression of the pat-3 reporters was not de-
tectable in DTCs in larval stages. In adults, pat-3 reporter
expression was very dim and bleached rapidly, necessitating
scoring whole animals. In whole adult animals, there was
a slight increase in the ratio of mCherry to GFP fluorescence
for the pat-3 reporters when mir-34 and mir-83 were de-
leted (Figure S10B, P # 0.05, unpaired t-test), suggesting
that the two miRNAs do directly regulate pat-3. Although

these reporter experiments could not confirm direct regula-
tion of both cdc-42 and pat-3 by mir-34 or mir-83, there
were numerous technical issues that limited the sensitivity
and fidelity of the reporter assays (see Discussion). It is
possible that cdc-42 and pat-3 could be acting in parallel
pathways that indirectly oppose the activities of mir-34
and mir-83, such that the observed suppression is the result
of decreasing the activity of an opposing pathway. However,
based on the computational prediction of cotargeting by
mir-34 and mir-83, combined with the fact that both cdc-
42 and pat-3 are known to be required for proper pathfind-
ing, we propose that these predicted mir-34 and mir-83
common targets function downstream of the two miRNAs
in conferring robustness to DTC migration in the face of
temperature changes.

mir-83(n4638); mir-34(gk437) mutants display reduced
cross-progeny fecundity

In addition to guiding the morphology of the adult gonad,
DTCs are also required to signal to the germline and
regulate the production of germ cells (reviewed in Hubbard
and Greenstein 2000). We therefore tested whether the de-
letion of mir-34 and mir-83 affected the function of the
hermaphrodite germline by quantifying offspring. We scored
the total number of viable progeny, animals that hatched
from laid eggs. We did not observe a noticeable difference
in the number of dead eggs laid by mir-83(n4638); mir-
34(gk437) mutants vs. N2 worms; therefore, we did not
include them in our quantification. When raised at 20� or
with temperature oscillations occurring during the previ-
ously described 2-hr temperature-sensitive period (referred
to as cycled), there was no statistical difference in the num-
ber of viable self-progeny produced by mir-83(n4638); mir-
34(gk437) mutants compared to wild type (Figure 6A, P $

0.05, unpaired t-test).
The self-fertility of a C. elegans hermaphrodite is limited

by the number of sperm that it produces. Once self-sperm are
exhausted, the hermaphrodite’s total reproductive capacity is
defined by the number of additional oocytes it can produce
that are competent to produce viable cross-progeny upon mat-
ing to males (Brenner 1974). To investigate cross-progeny
production, N2 and mir-83(n4638); mir-34(gk437) mutants

Table 1 Tissue-specific mir-34 rescue

Strain Migration defective (%) (N = 60)

N2 0
mir-34(gk437) 28.3
Pmir-34::mir-34; mir-34(gk437) 0***
Pdpy-7::mir-34; mir-34(gk437) 20
Plag-2::mir-34; mir-34(gk437) 11.7*
Plim-7::mir-34; mir-34(gk437) 31.7
Pmyo-3::mir-34; mir-34(gk437) 26.7

Synchronized L1’s were raised with oscillating temperatures: 20� for 16 hr (15� for
15 min, 25� for 15 min, repeated three additional times), 20� until young adult-
hood. ***P-value# 0.005, *0.01, P# 0.05, significance asterisks compare rescue
strains to mir-34(gk437) mutants.

Table 2 Tissue-specific mir-83 rescue

Strain Migration defective (%) (N = 60)

N2 0
mir-83(n4638) 30
Pmir-83::mir-83; mir-83(n4638) 1.7***
Pdpy-7::mir-83; mir-83(n4638) 25
Plag-2::mir-83; mir-83(n4638) 5***
Plim-7::mir-83; mir-83(n4638) 41.7
Pmyo-3::mir-83; mir-83(n4638) 5***

Synchronized L1’s were raised with oscillating temperatures: 20� for 16 hr (15� for
15 min, 25� for 15 min, repeated three additional times), 20� until young adult-
hood. ***P-value # 0.005, significance asterisks compare rescue strains to mir-83
(n4638) mutants.
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were first either raised at 20� or cycled. After day 4 of adult-
hood, animals had exhausted their own supply of sperm and
could no longer produce fertilized embryos (Byerly et al.
1976). At this point, young adult N2 males were mated to
aged animals to assess their fertility (Figure 6B). Temperature
oscillations did not affect the number of cross-progeny pro-
duced by wild-type hermaphrodites crossed to wild-type males
(247.25 6 77.52 vs. 236.5 6 103.44 at 20�, P $ 0.05, un-
paired t-test). Additionally, there was no significant difference
between the number of cross-progeny produced by mir-
83(n4638); mir-34(gk437) worms raised in either constant
temperature or with temperature oscillations when mated to
wild-type males (141.85 6 84.01 at 20� vs. 118.65 6 51.99
cycled, P $ 0.05, unpaired t-test). There were, however, sig-
nificant differences between strains in total cross-progeny pro-
duced. Specifically, the number of cross-progeny produced by
mir-83(n4638); mir-34(gk437) mutants when mated to wild-
type males was significantly less than the number of cross-
progeny produced by wild-type hermaphrodites mated to
wild-type males regardless of the temperature regime during
development (P # 0.005, unpaired t-test).

If the fecundity defect in mir-83(n4638); mir-34(gk437)
hermaphrodites was a direct consequence of the gonad mi-
gration defect, we would expect to see a greater number of
cross-progeny produced by mir-83(n4638); mir-34(gk437)
mutants when raised at 20� compared to temperature
cycled, as temperature cycling dramatically decreases the
percentage of animals with normal gonad morphology.
Moreover, we would expect to see two populations of ani-
mals within the cycled conditioned, a lower number of via-
ble progeny for the �60% of the population expected to

have a gonad migration defect, and a higher number of
viable progeny for the 40% of the population expected to
lack any defect. However, the reduced fecundity of mir-
83(n4638); mir-34(gk437) hermaphrodites was unaffected
by temperature regimen and the population distribution of
fecundity for mir-83(n4638); mir-34(gk437) worms was not
consistent with a 60/40% split. Thus it appears that the
fecundity defect in mir-83(n4638); mir-34(gk437) mutants
is likely independent of the gonad migration defect. It is
possible that mir-34 and mir-83 may regulate targets other
than cdc-42 and pat-3 within the DTCs that affect their abil-
ity to signal to the germline for the regulation of oocyte
production. Alternatively, there may be subtle changes in
the mating behavior of mir-83(n4638); mir-34(gk437) her-
maphrodites that could be detected with closer study.

mir-83(n4638); mir-34(gk437) mutants have
a decreased lifespan

A rearrangement of internal organs (as seen in Figure 1C)
might be expected to have negative consequences for the
overall fitness and viability of the affected worm. Moreover,
it has been shown that an animal’s fecundity can correlate
with its longevity (Hsin and Kenyon 1999; Berman and
Kenyon 2006; Kenyon 2010). To explore this possibility,
we measured the lifespan of N2 and mir-83(n4638);
mir-34(gk437) mutants raised at either 20� continu-
ously (Figure 7A) or with temperature oscillations dur-
ing the time-sensitive period (Figure 7B). Although
mir-83(n4638); mir-34(gk437) worms raised at 20�
appeared to have a slightly shortened lifespan compared
to N2, the difference was only marginally statistically

Figure 5 The mir-83(n4638); mir-34
(gk437) migration defect is suppressed
in cdc-42 and pat-3 heterozygotes. The
penetrance of the migration defective
phenotype is significantly reduced in
mir-83(n4638); mir-34(gk437) mutants
when (A) carrying one copy of cdc-42,
(B) raised on cdc-42 RNAi food as com-
pared to empty vector control, (C) car-
rying one copy of pat-3, or (D) raised on
pat-3 RNAi food as compared to empty
vector control. Arrested L1’s were
plated on HB101-seeded NGM plates
to restart development. Once plated,
temperature was held at 20� for 16
hr, then cycled as follows: 15� for
15 min, 25� for 15 min, four times, then
held at 20� until young adulthood.
***P-value # 0.005, **0.005 , P #

0.01, *0.01 , P # 0.05, P . 0.05 not
significant (n.s.).
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significant (Figure 7A, ***P # 0.005, **0.005 , P # 0.01,
*0.01 , P # 0.05, unpaired t-test). However, for animals
subjected to oscillating temperatures during the temperature-
sensitive period (from 16 to 18 hr postplating) the dif-
ference between N2 and mir-83(n4638); mir-34(gk437)
mutant worms was more pronounced and statistically signif-
icant from day 7 to day 21 (with the exception of days 9 and
17, Figure 7B, ***P # 0.005, **0.005 , P # 0.01, *0.01 ,
P # 0.05, unpaired t-test). The difference in lifespans may be

related to the DTC migration phenotype. A relation between
the two would explain the slight, less significant difference
in lifespan at 20�, when only �20% of the mir-83(n4638);
mir-34(gk437) population is migration defective, vs. the sig-
nificant difference in lifespan when animals undergo tem-
perature changes, as now �60% of the population is
migration defective. This hypothesis has yet to be explored
as we have not scored individual worms for both the migra-
tion phenotype and lifespan due to the fact that scoring for
the migration phenotype involves paralyzing the worms
and is potentially detrimental to their lifespan. It is possible
that the more pronounced difference in lifespan between
mir-83(n4638); mir-34(gk437) and N2 worms when raised
with temperature oscillations does not reflect a direct re-
lationship between lifespan and gonadal migration but
instead could reflect a general decrease in the fitness of
mir-83(n4638); mir-34 (gk437) worms when experiencing
temperature changes.

Discussion

There is an obvious benefit for building biological robustness
into genetic networks; the fitness of an organism critically
depends on the fidelity of developmental processes and
reproductive capacity in the face of environmental changes.
Previous research across numerous model organisms has
described evolutionarily conserved responses to stresses
such as food deprivation, heat shock, and various forms of
toxicity (reviewed in Lant and Storey 2010). miRNAs are
thought to contribute to ensuring the fidelity of gene expres-
sion programs in the face of both external stresses and in-
ternal transcriptional noise (Li et al. 2009) (reviewed
in Hornstein and Shomron 2006; Ebert and Sharp 2012;
Posadas and Carthew 2014). Previous studies have shown
how miRNAs can participate in regulatory loops to precisely
regulate gene expression levels (reviewed in Tsang et al.
2007; Ebert and Sharp 2012) or establish genetic switches.
miRNAs have also been shown to repress leaky transcrip-
tion, thereby dampening noise within genetic networks
(reviewed in Hornstein and Shomron 2006; Posadas and
Carthew 2014).

The precise spatiotemporal program of DTC migration is
controlled by a complex genetic network including genes
pat-3 and cdc-42 (Cram et al. 2006), which encode, respec-
tively, b-integrin and a GTPase downstream of integrin
signaling. Genetic networks need to be robust so as to com-
pensate for adverse changes in gene expression that can
result from stress (reviewed in Lant and Storey 2010; Zhou
et al. 2011). Cells can compensate for stress-induced posi-
tive fluctuations in mRNA levels through the post-transcrip-
tional repressive action of miRNAs (Figure 8A). Likewise,
negative fluctuations in mRNA levels can be compensated
for by activating transcription and/or translation, including
releasing inhibition imparted by miRNAs. Thus miRNAs
can contribute to the robustness of a genetic network by
fine tuning the expression levels of networked genes and

Figure 6 mir-83(n4638); mir-34(gk437) mutants produce normal sized
self-broods and reduced cross-broods. (A) The total number of living off-
spring was counted to determine brood size for N2 and mir-83(n4638);
mir-34(gk437) worms raised at 20� throughout development or subjected
to temperature cycles (15� for 15 min, 25� for 15 min, repeated four
times) from 16 to 18 hr of development after plating starved L1’s on
HB101. There is no statistically significant difference between any of
the groups. (B) Individual 4-day-old adult hermaphrodites that had
exhausted their self-progeny were crossed to four 1-day-old N2 males
and number of cross-brood progeny was counted. The average cross-
brood size was reduced for mir-83(n4638); mir-34(gk437) hermaphro-
dites whether they were raised at 20� or subjected to temperature cycles
(15� for 15 min, 25� for 15 min, repeated four times) from 16 to 18 hr of
development. Averages were compared using an unpaired t-test, per-
formed by PRISM. ***P-value # 0.005. Each group was compared to
the three others. The absence of significance asterisks denotes a lack of
statistical significance.
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buffering their expression from environmentally driven ad-
verse perturbations.

For DTCs, phase 1 and phase 3 of their migration is
regulated by cell-intrinsic integrin signaling (Baum and Gar-
riga 1997; Lee et al. 2001; Cram et al. 2006; Meighan and
Schwarzbauer 2007). We propose that both mir-34 and mir-
83 help protect the robustness of this genetic network by
regulating cdc-42 and pat-3 (Figure 8B), particularly when
the network is stressed by temperature changes. Our finding
that DTC expression of mir-34 and mir-83 can rescue the
migration defect of their respective mutants supports the
hypothesis that the two miRNAs regulate cdc-42 and pat-3
within the DTCs. Although these rescue data strongly sug-
gest that mir-34 and mir-83 function within the DTCs, we
were not able to confirm expression of these miRNAs in
DTCs. Transgenes with either themir-34 ormir-83 promoter
driving GFP did not produce detectable expression of GFP in
the DTCs (although expression in body wall muscle cells
was detected for mir-34 driven GFP). It is possible that the
endogenous mir-34 and mir-83 genes are expressed in the
DTCs, but these transgenic constructs may express GFP at
levels below limits of detection.

Interestingly, we also observed rescue of the migration
defect in mir-83(n4638) mutants by expression of mir-83 in
muscle cells using the myo-3 promoter. This could reflect

a low level of activity of the myo-3 promoter in the DTCs.
Alternatively, it is possible that mir-83 may perform func-
tions within both the DTCs and muscle, and that function in
either cell type can rescue DTC migration. A third possibility
is that mir-83 may function only in the DTCs, but that the
mir-83 miRNA can be supplied either cell intrinsically or cell
extrinsically from muscle-expressed mir-83. Intriguingly, an-
other known component of the DTC migration gene net-
work, the metalloprotease mig-17, is secreted by body wall
muscle cells and localizes to the gonadal basement mem-
brane (Nishiwaki et al. 2000). It is also possible that mir-83
synthesized in the muscle could be transported to the DTCs
to function, explaining why mir-83 expression in either of
these two tissues can result in similar levels of rescue.

For technical reasons, our fluorescent reporter transgene
approach did not permit us to confirm 39 UTR-dependent
regulation of cdc-42 or pat-3 bymir-34 ormir-83. Both genes
are widely expressed; cdc-42 is most highly expressed in the
intestine and muscles, while pat-3 expression is particularly
high in muscles (unpublished results and Plenefisch et al.
2000). Since the two DTCs make up such a small fraction of
the worm, protein expression changes within the DTCs are
not easily analyzed by Western blotting as expression
throughout the entire worm will mask any small cell-specific
changes. We used fluorescent reporters due to the difficulty

Figure 7 mir-83(n4638); mir-34(gk437) mutants have
a decreased lifespan compared to wild type. Wild-type
(N2) and mir-83(n4638); mir-34(gk437) embryos were
harvested by hypochlorite treatment and synchronized
L1 larvae were obtained by hatching overnight in M9.
Larvae were plated on HB101-seeded NGM plates and
raised (A) continuously at 20� or (B) subjected to temper-
ature cycles (15� for 15 min, 25� for 15 min, repeated
four times) from 16 to 18 hr of development after plating
starved L1’s on HB101. For each longevity assay shown in
panels A and B, 100 animals per replicate, three repli-
cates per condition, were plated as L4’s (day 0) and
tracked until their death. Alive or dead was determined
by prodding worms on their nose and looking for a re-
action. Daily averages were compared using a two sam-
ple t-test for means. ***P-value # 0.005, **0.005 , P #

0.01, *0.01 , P # 0.05.
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of seeing cell-specific changes. We first attempted to gener-
ate single copy insertions of the four reporters. For both the
pat-3 GFP reporter and the cdc-42 mCherry reporter, we
were not able to generate single copy integrated transgenes
that expressed at detectable levels. Therefore we were
forced to use multicopy arrays, which most certainly reflect
an overexpression of mRNA. We suspect that the absence of
measurable response of these reporters tomir-34 andmir-83
activity in our experiments likely reflects an overexpression
of the reporters, in excess to the endogenous miRNA levels.
It is also possible that mir-34 and mir-83 may regulate their
targets in a fashion too dynamic to visualize using fluores-
cent reporters.

Here we showed that mir-34 and mir-83 both contribute
to keeping DTC migrations robust and protecting the fidelity
of DTC migratory behavior from changes in temperature. In
addition to organizing the morphogenic processes that
shape the mature gonad, DTCs are also responsible for reg-
ulating meiosis in the germline (Hubbard and Greenstein
2000). Therefore DTCs have a direct impact on C. elegans
reproductive capacity, and there is a direct benefit for the
worm to protect these cells from external stresses. Interest-
ingly, although mir-83(n4638); mir-34(gk437) mutants pro-
duced the normal number of self-progeny in our experiments,
they nevertheless exhibited reduced numbers of cross-progeny
when mated to wild-type males. Thus, the overall maximum
reproductive capacity of mir-83(n4638); mir-34(gk437) her-
maphrodites is compromised. Our results suggest that this
maximum fecundity defect is not a direct consequence of
the gonad migration defect, as the penetrance of the fecundity
defect is higher than that of the migration defect and is not
enhanced by temperature oscillations. Additionally the fecun-
dity defect may reflect a role for mir-34 and mir-83 in regu-

lating fertility that is entirely unrelated to their role in
regulating DTC migrations. We do not yet know the pathway
or pathways through which mir-34 and mir-83 affect fertility
or whether the fertility phenotypes represent functions within
the germline, DTCs, or both.

We identified a 2-hr temperature-sensitive period, during
which temperature oscillations can induce the enhanced
DTC migration phenotype of mir-83(n4638);mir-34(gk437)
hermaphrodites. This temperature-sensitive period overlaps
with the birth of the DTCs during the L1 larval stage and is
well before the DTCs begin their migration (Sulston 1976;
Sulston and Horvitz 1977; Kimble and Hirsh 1979; Sulston
et al. 1983). We have not determined what aspect of DTC
specification and/or differentiation may be inherently sensi-
tive to temperature changes such that in the absence of mir-
34 andmir-83, DTCs display a stronger defect in pathfinding
fidelity than when under constant temperature. It is intrigu-
ing that this defect is enhanced by fluctuating temperature
specifically during the L1 stage, suggesting that DTCs are
particularly sensitive to the stress of unstable temperature
prior to the execution of their migratory program. It is
known that the rate of development is closely tied to the
environmental temperature in C. elegans. Temperature sen-
sitivity during the L1 stage may reflect a requirement to
buffer noise within the integrin genetic network early in
development. A lack of proper initial buffering may sensitize
DTCs such that their subsequent migration is no longer ro-
bust. Alternatively, early temperature fluctuations may lead
to changes in gene expression that are subsequently buff-
ered by mir-34 and mir-83 as the DTCs actively migrate
during later larval stages.

In mammals, both mir-34 and mir-29 (the mammalian
mir-83 homolog) have been implicated in cancer, and

Figure 8 A model proposing robustness functions for
mir-34 and mir-83 through dampening noisy cdc-42
and pat-3 expression in the face of temperature changes.
(A) Environmental stresses, such as changing tempera-
tures, may lead to fluctuations in the expression levels
of various transcripts, which could challenge cellular pro-
teomic homeostasis. Repression of protein production by
miRNAs can provide a means of stabilizing protein output
from fluctuating target transcripts. (B) In the case of mir-
34 and mir-83, the fidelity of DTC migration is proposed
to be maintained in part by inhibiting noisy cdc-42 and
pat-3 expression incited by unstable environmental
temperature.
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mir-29 has also been implicated in regulating fibrosis and
cell–cell interactions (reviewed in Boominathan 2010; Krie-
gel et al. 2012). Mammalian mir-34 homologs are transcrip-
tionally activated by p53 and mediate post-transcriptional
regulatory processes downstream of p53 (reviewed in He
et al. 2007; Hermeking 2009; Boominathan 2010). mir-
34a overexpression has been shown to reduce lung cancer
tumor cell proliferation and tumor volume (Xue et al. 2014).
Human cells contain four paralogs of mir-29/mir-83:
namely, mir-29a, mir-29b-1, mir-29b-2, and mir-29c
(reviewed in Kriegel et al. 2012). Expression of the mir-29
miRNAs are regulated by both c-Myc and NF-kB and have
been shown to regulate genes involved in apoptosis, cell
proliferation, differentiation, and extracellular matrix com-
ponents (reviewed in Kriegel et al. 2012). The mir-29 miR-
NAs have been shown to be downregulated in a variety of
cancers, including cervical, colon, liver, leukemia, lung, and
melanoma (Calin et al. 2005; Yanaihara et al. 2006; Cum-
mins et al. 2006; Pekarsky et al. 2006; Garzon et al. 2008,
2009; Xiong et al. 2010; Li et al. 2011; Nguyen et al. 2011).
They have also been shown to be up-regulated in certain
breast cancers. Human CDC42 was shown to be a direct
target of the mir-29 miRNAs in work from the Kim lab (Park
et al. 2008). Additionally, they showed that the suppression
of CDC42 by mir-29 led to p53 up-regulation and increased
apoptosis. Taken together with the work in mammals show-
ing that mir-34 reinforces p53 negative regulation, this sug-
gests that the coregulation of a genetic network by mir-34
and mir-83/mir-29 is evolutionarily ancient and conserved.
Furthermore, TargetScan (Lewis et al. 2005; Grimson et al.
2007; Friedman et al. 2009; Garcia et al. 2011) predicts
conserved targeting of human ITGB1 (integrin beta-1),
ITGA11 (integrin alpha-11), and ITGA6 (integrin alpha-6)
by the mir-29 family and conserved targeting for human
ITGB8 (integrin beta-8) and ITGA10 (integrin alpha-10)
by the mir-34 family.

Here we show a link betweenmir-34,mir-83/mir-29, and
integrin-controlled cell migration. Integrin and extracellular
matrix misregulation is a key factor in epithelial to mesen-
chymal transition (EMT) (reviewed in Seguin et al. 2015).
The implication of mir-34 and mir-83/mir-29 in various can-
cers may reflect a conserved involvement in metastasis
through altered EMT that has yet to be explored. The wan-
dering DTC defect in C. elegans mir-34 and mir-83/mir-29
mutants, which we have shown results from misregulation
of pat-3 and cdc-42, may reflect a homologous miRNA–
integrin axis in tumor formation, proliferation, and metas-
tasis in higher animals, including humans.
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Figure S1   mir-34 and mir-83 are highly conserved. 
Nucleotide alignments of (A) mir-34 and (B) mir-83 sequences. mir-29 is the mammalian homolog of mir-83. 
Conserved nucleotides are shown in red. 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Figure S1. mir-34 and mir-83 are highly conserved.
Nucleotide alignments of (A) mir-34 and (B) mir-83 sequences. mir-29 is the mammalian homolog of mir-83. Conserved 
nucleotides are shown in red. 
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Figure S2   The gonad migration defect is significantly enhanced in mir-83(n4638); mir-34(gk437) double mutants 
raised on OP50 E. coil. 
(A) Animals raised at 20o or (B) in oscillating temperatures (15o for 15 minutes, 25o for 15 minutes, repeated from 
plating eggs until young adulthood). *** p-value ≤ .005, ** .005 < p ≤ .01, * .01 < p ≤ .05.  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Figure S2. The gonad migration defect is significantly enhanced in mir-83(n4638); mir-34(gk437) double mutants raised 

on OP50 E. coil.
(A) Animals raised at 20º or (B) in oscillating temperatures (15º for 15 minutes, 25º for 15 minutes, repeated from plating 

eggs until young adulthood). *** p-value ≤ .005, ** .005 < p ≤ .01, * .01 < p ≤ .05.
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Figure S3   Migration defect seen in two different mir-34 null alleles. 
Animals raised at either (A) 20o or (B) in oscillating temperatures (15o for 15 minutes, 25o for 15 minutes, repeated 
from plating eggs until young adulthood). Not significant (n.s) if p-value greater than .05.  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Figure S3. Migration defect seen in two different mir-34 null alleles.
Animals raised at either (A) 20º or (B) in oscillating temperatures (15º for 15 minutes, 25º for 15 minutes, repeated from 
plating eggs until young adulthood). Not significant (n.s) if p-value greater than .05.  
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Figure S4   Additional temperature oscillation schemes. 
Temperature oscillated between 15o and 25o every 15 minutes for the time windows indicated. (A) For the first 12 
hours from the initial plating of starved L1s on HB101-seeded NGM plates. (B) From 14 to 20 hours post-plating L1s, 
a time period that overlaps with the 2 hour window described in Figure 3. (C) From 22 hours post plating L1s until 
worms were scored as adults. *** p-value ≤ .005, significance stars compare N2 to mir-83(n4638); mir-34(gk437) 
mutants. 
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Figure S4. Additional temperature oscillation schemes.
Temperature oscillated between 15º and 25º every 15 minutes for the time windows indicated. (A) For the first 12 hours 
from the initial plating of starved L1s on HB101-seeded NGM plates. (B) From 14 to 20 hours post-plating L1s, a time 
period that overlaps with the 2 hour window described in Figure 3. (C) From 22 hours post plating L1s until worms were 
sFoUed as adults. *** p-value ≤ .005, signiIiFanFe staUs FoPpaUe 1� to mir-83(n4638); mir-34(gk437) mutants.
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Figure S5   Oscillating temperatures between 15o and 37o does not further enhance the gonad migration defect in 
mir-83(n4638); mir-34(gk437) mutants. 
Starved L1s were plated on HB101-seeded NGM plates, grown at 20o for 16 hours, then cycled between 15o and 37o 

every 15 minutes for a total of 2 hours. *** p-value ≤ .005, significance stars compare N2 to mir-83(n4638); 
mir-34(gk437) mutants.  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Figure S5. Oscillating temperatures between 15º and 37º does not further enhance the gonad migration defect in 

mir-83(n4638); mir-34(gk437) mutants.

Starved L1s were plated on HB101-seeded NGM plates, grown at 20º for 16 hours, then cycled between 15º and 37º 

eveUy 15 Pinutes IoU a total oI � houUs. *** p-value ≤ .005, signiIiFanFe staUs FoPpaUe 1� to mir-83(n4638); 
mir-34(gk437) mutants.
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Figure S6   Enhancement of the gonad migration defect is independent of the direction of the initial temperature 
change. Temperature oscillation schemes were identical to those presented in Figure 3 except the direction of the 
initial temperature change was reversed. Rather than first lowering the temperature to 15o, the temperature was 
elevated to 25o for 15 minutes. This was followed by 15 minutes at 15o and repeated three additional times. 
Oscillations occurred (A) 12-14, (B) 16-18, or (C) 20-22 hours post plating starved L1s. *** p-value ≤ .005, 
significance stars compare N2 to mir-83(n4638); mir-34(gk437) mutants.  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Figure S6. Enhancement of the gonad migration defect is independent of the direction of the initial temperature change.
Temperature oscillation schemes were identical to those presented in Figure 3 except the direction of the initial temperature 
change was reversed. Rather than first lowering the temperature to 15º, the temperature was elevated to 25º for 15 
minutes. This was followed by 15 minutes at 15º and repeated three additional times. Oscillations occurred (A) 12-14, 
�%) 1�-1�, oU �&) �0-�� houUs post plating staUved /1s. *** p-value ≤ .005, signiIiFanFe staUs FoPpaUe 1� to mir-83(n4638); 
mir-34(gk437) mutants.
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Figure S7   The amount of enhancement of the gonad migration defect is independent of the magnitude of the 
temperature change. 
Five degree changes between (A) 15o and 20o and (B) 20o and 25o during the 2 hour window from 16-18 hours post 
plating starved L1s. *** p-value ≤ .005, significance stars compare N2 to mir-83(n4638); mir-34(gk437) mutants. 
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Figure S7. The amount of enhancement of the gonad migration defect is independent of the magnitude of the 
temperature change. 
Five degree changes between (A) 15º and 20º and (B) 20º and 25º during the 2 hour window from 16-18 hours post 
plating staUved /1s. *** p-value ≤ .005, signiIiFanFe staUs FoPpaUe 1� to mir-83(n4638); mir-34(gk437) mutants.
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Figure S8   A single temperature cycle is not sufficient to enhance the gonad migration defect in mir-83(n4638); 
mir-34(gk437) mutants. 
The 2 hour window consists of four rounds of 15 minutes at 15o followed by 15 minutes at 25o. A single round of 
temperature cycling is not enough to see an enhancement of the migration phenotype whether that occurs (A) 16 
hours, (B) 16.5 hours, (C) 17 hours, or (D) 17.5 hours post plating starved L1s. *** p-value ≤ .005, ** .005 < p ≤ .01, 
significance stars compare N2 to mir-83(n4638); mir-34(gk437) mutants.  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Figure S8. A single temperature cycle is not sufficient to enhance the gonad migration defect in mir-83(n4638); 
mir-34(gk437) mutants.
The 2 hour window consists of four rounds of 15 minutes at 15º followed by 15 minutes at 25º. A single round of 
temperature cycling is not enough to see an enhancement of the migration phenotype whether that occurs (A) 16 
houUs, �%) 1�.5 houUs, �&) 1� houUs, oU �') 1�.5 houUs post plating staUved /1s. *** p-value ≤ .005, ** .005 < p ≤ .01, 
significance stars compare N2 to mir-83(n4638); mir-34(gk437) mutants.
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Figure S9   The gonad migration defect in mir-83(n4638); mir-34(gk437) mutants is not movement dependent. 
The unc-54(e190) mutation paralyzes worms. The penetrance of the migration defect is not significantly different 
between mir-83(n4638); mir-34(gk437) mutants and unc-54(e190); mir-83(n4638); mir-34(gk437) mutants. Starved 
L1s were plated on HB101-seeded NGM plates, spent 16 hours at 20o, followed by four 15 minutes oscillations 
between 15o and 25o. *** p-value ≤ .005. 
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Figure S9. The gonad migration defect in mir-83(n4638); mir-34(gk437) mutants is not movement dependent.
The unc-54(e190) mutation paralyzes worms. The penetrance of the migration defect is not significantly different 
between mir-83(n4638); mir-34(gk437) mutants and unc-54(e190); mir-83(n4638); mir-34(gk437) mutants. Starved 
L1s were plated on HB101-seeded NGM plates, spent 16 hours at 20º, followed by four 15 minutes oscillations between 
15� and �5�. *** p-value ≤ .005. 
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Figure S10   Quantification of cdc-42 and pat-3 fluorescent reporters. 
Synchronized L1s were plated on HB101-seeded NGM plates and cycled - 20o for 16 hours, [15o for 15 minutes, 25o 
for 15 minutes, repeated three additional times], 20o until time of scoring. The mean value fluorescence of mCherry 
was normalized to that of GFP. (A) Ratio of fluorescence within a DTC for worms with mir-34 and mir-83 versus the 
double miRNA mutant (strain VT3136 and VT3118 respectively). (B) Ratio of fluorescence for whole animals for 
worms with mir-34 and mir-83 versus the double miRNA mutant (strain VT3178 and VT3145 respectively). * .01 < p 
≤ .05.  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Figure S10. Quantification of cdc-42 and pat-3 fluorescent reporters.

Synchronized L1s were plated on HB101-seeded NGM plates and cycled - 20º for 16 hours, [15º for 15 minutes, 25º for 15 

minutes, repeated three additional times], 20º until time of scoring. The mean value fluorescence of mCherry was normalized 

to that of GFP. (A) Ratio of fluorescence within a DTC for worms with mir-34 and mir-83 versus the double miRNA mutant 

(strain VT3136 and VT3118 respectively). (B) Ratio of fluorescence for whole animals for worms with mir-34 and mir-83 versus 

the douEle Pi51$ Putant �stUain 97�1�� and 97�1�5 UespeFtively). * .01 < p ≤ .05.
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Table S1   Predicted targets of both mir‐34 and mir‐83. 

SEQUENCE  GENE NAME  SCREENED 

B0348.6  ife‐3   

C03E10.4  gly‐20   

C04E6.7     

C06G1.4  ain‐1  YES 

C14F5.5  sem‐5  YES 

C16A3.2     

C16E9.4  inx‐1   

C23H4.1  cab‐1   

C26D10.5  eff‐1   

C34H3.1  tag‐275   

C38C6.2  atg‐2  YES 

C43H6.6     

C48A7.1  egl‐19   

C52B9.2  ets‐9   

C56G2.1  akap‐1   

D2023.2  pyc‐1   

F09B9.2  unc‐115  YES 

F14D12.2  unc‐97  YES 

F21A3.3     

F21F8.10  str‐135   

F39C12.3  tsp‐14   

F42H10.3     

F46C8.5  ceh‐14   

F46E10.9  dpy‐11   

F49E11.1  mbk‐2   
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SEQUENCE  GENE NAME  SCREENED 

F53G12.1  rab‐11.1   

H18N23.2     

H19N07.2  math‐33  YES 

K08B12.5  tag‐59  YES 

K09E9.2  erv‐46   

M04G12.4  somi‐1  YES 

M106.4  gmps‐1   

R03G5.1  eft‐4   

R07B1.9     

R07G3.1  cdc‐42  YES 

R09B5.12  chil‐14   

R153.1  pde‐4   

T05A10.1  sma‐9   

T12G3.1  sqst‐1   

T14F9.4  peb‐1  YES 

T17H7.4  gei‐16   

T19A6.1     

T27B1.2  pat‐9   

T28D9.7  del‐10   

W01F3.1  mnr‐1   

W03G9.1  snf‐1   

W09G10.6  clec‐125   

Y43H11AL.1     

Y54E10A.9  vbh‐1   

Y73B6BL.6  sqd‐1   
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List of genes whose mRNA is predicted to be targeted by both mir‐34 and mir‐83 according to mirWIP. Included are both cdc‐42 
and pat‐3. RNAi was used to knockdown a subset of candidate targets (designated by YES in the SCREENED column) to look for 
suppression of the migration defect in mir‐83(n4638); mir‐34(gk437) mutants.   

SEQUENCE  GENE NAME  SCREENED 

ZC64.3  ceh‐18  YES 

ZK1058.2  pat‐3  YES 

ZK112.2  ncl‐1   

ZK377.2  sax‐3  YES 

ZK994.3  pxn‐1   
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Table S2   C. elegans Strains 
 

STRAIN NAME  GENOTYPE 

MT12955  mir‐1(n4102) I 

MT12969  mir‐259(n4106) V 

MT15501  mir‐83(n4638) IV 

MT16309  mir‐247 mir‐797(n4505) X

RW3600  pat‐3(st564)/qC1 [dpy‐19(e1259) glp‐1(q339)] III

VC898  cdc‐42(gk388)/mIn1 [mIS14 dpy‐10(e128)] II

VT1555  mir‐59(n4604) IV 

VT2392  mir‐34(gk437) X 

VT2527  mir‐124(n4255) IV 

VT2595  mir‐83(n4638) IV; mir‐34(gk437) X

VT2797  pat‐3(st564)/qC1 [dpy‐19(e1259) glp‐1(q339)] III;mir‐83(n4638) IV;mir‐34(gk437) X 

VT2812  unc‐54(e190) I; mir‐83(n4638) IV;mir‐34(gk437) X

VT2885  cdc‐42(gk388)/mIn1 [mIS14 dpy‐10(e128)] II;mir‐83(n4638) IV;mir‐34(gk437) X 

VT2905  mir‐259(n4106) V; mir‐34(gk437) X

VT2906  mir‐83(n4638) IV; mir‐259(n4106) V;mir‐34(gk437) X

VT3032  mir‐83(n4638) IV; mir‐259(n4106) V

VT3104  maIs385 [Plim‐7::mir‐34 cb unc‐119+] I;mir‐34(gk437) X

VT3105  maIs386 [Pmyo‐3::mir‐34 cb unc‐119+] I;mir‐34(gk437) X

VT3106  maIs387 [Pmir‐34::mir‐34 cb unc‐119+] I;mir‐34(gk437) X

VT3107  maIs388 [Plim‐7::mir‐83 cb unc‐119+] II;mir‐83(n4638) IV

VT3108  maIs389 [Pdpy‐7::mir‐83 cb unc‐119+] II;mir‐83(n4638) IV

VT3109  maIs390 [Pmyo‐3::mir‐83 cb unc‐119+] II;mir‐83(n4638) IV

VT3110  maIs391 [Pmir‐83::mir‐83 cb unc‐119+] II;mir‐83(n4638) IV

VT3111  maIs392 [Plag‐2::mir‐83 cb unc‐119+] II;mir‐83(n4638) IV

VT3118  unc‐119(ed3) III; mir‐83(n4638) IV;mir‐34(gk437) X;maEx246

VT3123  maIs396 [Pdpy‐7::mir‐34 cb unc‐119+] I;mir‐34(gk437) X

VT3124  maIs397 [Plag‐2::mir‐34 cb unc‐119+] I;mir‐34(gk437) X

VT3136  unc‐119(ed3) III; maEx246

VT3145  unc‐119(ed3) III; mir‐83(n4638) IV;mir‐34(gk437) X;maEx247

VT3178  unc‐119(ed3) III; maEx247

VT3289  mir‐83(n4638) IV; mir‐34(gk437) X

VT3294  maIs387 I; maIs391 II;mir‐83(n4638) IV;mir‐34(gk437) X
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Table S3   Entry vectors and primers 
 

List of primers used to amplify genomic regions and the resulting Gateway compatible entry vectors created for tissue specific 
rescue and target sensor constructs.   

VECTOR  DESCRIPTION  FORWARD PRIMER 5’→ 3’ REVERSE PRIMER 5’→ 3’ 

pSLB028  pat‐3 3‘UTR  GATAAATAGTTTTTATCCTTATATTTTAAT CTCGGGGAACAACAACTGACTCTGT 

pSLB029  mir‐34 hairpin  CTTAATACCACTACTGACTA AAGGTTTCTGATCTAAGATG 

pSLB032  Mutated cdc‐42 3‘UTR  N/A  N/A

pSLB033  Mutated pat‐3 3‘UTR  N/A  N/A

pSLB035  cdc‐42 promoter  ATATCATATAAACTTGCGAAGGAAT TTCGCCTGAAAAAAAAAATGAATA 

pSLB036  cdc‐42 3‘UTR  GAACGTCTTCCTTGTCTCCATGT TGTTCCTCTCCTCGTCAAACA 

pSLB037  lim‐7 promoter  AGCAATGCTTCCGAAAACC GCCGTTGAACAGATATAGAAGTTTG

pSLB038  dpy‐7 promoter  AATCTCATTCCACGATTTCT TTATCTGGAACAAAATGTA 

pSLB040  mir‐83 hairpin  TAAAAGCACCACTCGGAACC AATAGCTCTCGACGCGAAAT 

pSLB041  mir‐83 3’ sequence  CTGTATTCAATTATTTGATTC TTTTCAAGCCAAAACAGAGC 

pSLB042  myo‐3 promoter  TGTGTGTGATTGCTTTTTC TTCTAGATGGATCTAGT 

pSLB043  mir‐34 3’ sequence  GAGTTTTTGAAAAGTTGAGG CACGGCCGCTACCTCCACCTTA 

pSLB062  mir‐83 promoter  ACGAATTTCCCACCATTTTG AATTGAATAATTTGTACCTGCG 

pSLB069  pat‐3 promoter  ACGGTATTTTTTCGGGAGA TTGATGCCGGGTAGGTT 

pSLB076  lag‐2  promoter  ACTGGCGCTACTCCACCTT CTGAAAAAAGGCAAATTTGAAAAG 

pSLB080  mir‐34 promoter  N/A  N/A
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Table S4   Expression constructs 
 

 
The noted entry and destination vectors were used to construct the described transgenes for tissue specific rescue  
and target sensor experiments.    

VECTOR  DESCRIPTION  ENTRY VECTORS DESTINATION VECTORS

pSLB054  Pcdc‐42::GFP‐H2B::Mutated cdc‐42 3‘UTR pCM1.35, pSLB033, pSLB035 pCFJ210 

pSLB056  Pcdc‐42::mCherry‐H2B::cdc‐42 3‘UTR pCM1.151, pSLB035, pSLB036 pCFJ150 

pSLB059  Plim‐7::mir‐83 hairpin::mir‐83 3‘UTR pSLB037, pSLB040, pSLB041 pCFJ150 

pSLB063  Pdpy7::mir‐83 hairpin::mir‐83 3’ UTR pSLB038, pSLB040, pSLB041 pCFJ150 

pSLB064  Pmyo‐3::mir‐83 hairpin::mir‐83 3’ UTR pSLB040, pSLB041, pSLB042 pCFJ150 

pSLB065  Plim‐7::mir‐34 hairpin::mir‐34 3’ UTR pSLB029, pSLB037, pSLB043 pCFJ210 

pSLB066  Pdpy‐7::mir‐34 hairpin::mir‐34 3’ UTR pSLB029, pSLB030, pSLB043 pCFJ210 

pSLB067  Pmyo‐3::mir‐34 hairpin::mir‐34 3’ UTR pSLB029, pSLB042, pSLB043 pCFJ210 

pSLB070  Pmir‐83::mir‐83 hairpin::mir‐83 3‘UTR pSLB040, pSLB041, pSLB062 pCFJ150 

pSLB071  Ppat‐3::mCherry‐H2B::pat‐3 3‘UTR pCM1.151, pSLB028, pSLB069 pCFJ150 

pSLB075  Ppat‐3::GFP‐H2B::Mutated pat‐3 3‘UTR pCM1.35, pSLB033, pSLB069 pCFJ210 

pSLB077  Plag‐2::mir‐34 hairpin::mir‐34 3‘UTR pSLB029, pSLB043, pSLB076 pCFJ210 

pSLB078  Plag‐2::mir‐83 hairpin::mir‐83 3‘UTR pSLB040, pSLB041, pSLB076 pCFJ150 

pSLB081  Pmir‐34::mir‐34 hairpin::mir‐34 3‘UTR pSLB029, pSLB043, pSLB080 pCFJ210 
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Table S5   Additional stresses 
 

aRaised from egg to young adulthood at 15º. Two replicates, n=60 and n=100. 
bRaised from egg to young adulthood at 25º. Two replicates, n=80 and n=100. 
cRaised from egg to young adulthood at 20º on NGM plates with 0.03% sodium arsenite. 
dDauers isolated from starved plates and moved to fresh plates. Left at 20º until young adulthood. 
eRaised from egg to young adulthood at 25º on P. aeruginosa seeded NGM plates.  
 
Penetrance of the migration defect in the noted strains raised in other stress conditions. 

STRESS  STRAIN  MIGRATION DEFECT PENETRANCE

a15º  N2  4.5 +/‐ 6.36%

  mir‐34(gk437)  21.5 +/‐ 12.02%

  mir‐83(n4638)  14.5 +/‐ 0.71%

  mir‐83(n4638); mir‐34(gk437) 21 +/‐ 5.66%

b25º  N2  5.3 +/‐ 3.18%

  mir‐34(gk437)  13.4 +/‐ 6.54%

  mir‐83(n4638)  11.6 +/‐ 0.53%

  mir‐83(n4638); mir‐34(gk437) 24 +/‐ 5.66%

cArsenic  N2  0% (n=30)

  mir‐83(n4638); mir‐34(gk437) 27% (n=30)

dDauer  N2  7% (n=60)

  mir‐34(gk437)  27% (n=60)

  mir‐83(n4638)  25% (n=60)

  mir‐83(n4638); mir‐34(gk437) 37% (n=60)

eP. aeruginosa  N2  3% (n=30)

  mir‐34(gk437)  13% (n=30)

  mir‐83(n4638)  13% (n=30)

  mir‐83(n4638); mir‐34(gk437) 17% (n=30)

 


