
3/11/2020 BAM format specification for PacBio — PacBioFileFormats 5.1.0 documentation

https ://pacbiofileformats.readthedocs.io/en/5.1/BAM.html 1/7

BAM format specification for PacBio
The BAM format is a binary, compressed, record-oriented container format for raw or aligned sequence reads. The associated SAM format is
a text representation of the same data. The specifications for BAM/SAM are maintained by the SAM/BAM Format Specification Working
Group.

PacBio-produced BAM files are fully compatible with the BAM specification. In this document we describe the way we make use of the
extensibility mechanisms of the BAM specification to encode PacBio-specific information, as well as conventions we adhere to.

An example file adhering to this specification will be maintained in the pbcore Python library.

Version

The PacBio BAM specification version described here is 3.0.5. PacBio BAM files adhering to this spec contain the tag pb:3.0.5 in the @HD
header.

Coordinate conventions

The BAM format uses a 0-based coordinate system to refer to positions and intervals on the reference.

PacBio also uses a 0-based coordinate system to refer to positions and intervals within sequence reads. Positions in PacBio reads are
reckoned from the first ZMW read base (as base 0), not the first base in the HQ region.

Perhaps confusingly, the text SAM format uses 1-based coordinate system.

Note that following the SAM/BAM specification, 0-based coordinate intervals are defined as half-open (end exclusive) while 1-based intervals
are closed.

Query versus aligned query terminology

A sequence read presented to an aligner is termed a query; typically this query will be a subsequence of an entire PacBio ZMW read—most
commonly, it will be a subread, which is basecalls from a single pass of the insert DNA molecule.

Upon alignment, generally only a subsequence of the query will align to the reference genome, and that subsequence is referred to as the
aligned query. Under soft-clipping, the entirety of the query is stored in the aligned BAM, but the CIGAR field indicates that some bases at
either end are excluded from the alignment.

Abstractly, we denote the extent of the query in ZMW read as [qStart, qEnd) and the extent of the aligned subinterval as [aStart, aEnd) The
following graphic illustrates these intervals:

 qStart qEnd
0 | aStart aEnd |
[--...----*--*---------------------*-----*-----...------) < "ZMW read" coord. system

    ~~~----------------------~~~~~~                  <  query; "-" = aligning subseq.
[--...-------*---------...---------*-----------...------)  < "ref." / "target" coord. system
0  tStart  tEnd

In our BAM files, the qStart, qEnd are contained in the qs and qe tags, (and reflected in the QNAME); the bounds of the aligned query in the
ZMW read can be determined by adjusting qs and qe by the number of soft-clipped bases at the ends of the alignment (as found in the
CIGAR).

Note:  In the legacy cmp.h5 file format, soft-clipping was not possible, and the bounds of the original query were not stored. Only aStart,
aEnd were stored, although in that file format they were referred to as rStart, rEnd.

QNAME convention
  v: 5.1 



3/11/2020 BAM format specification for PacBio — PacBioFileFormats 5.1.0 documentation

https ://pacbiofileformats.readthedocs.io/en/5.1/BAM.html 2/7

By convention the QNAME (“query template name”) for unrolled reads and subreads is in the following format:

{movieName}/{holeNumber}/{qStart}_{qEnd}

where [qStart, qEnd) is the 0-based coordinate interval representing the span of the query in the ZMW read, as above.

For CCS reads, the QNAME convention is:

{movieName}/{holeNumber}/ccs

CIGAR conventions

The “M” CIGAR op (BAM_CMATCH) is forbidden in PacBio BAM files. PacBio BAM files use the more explicit ops “X” (BAM_CDIFF) and “=”
(BAM_CEQUAL). PacBio software will abort if BAM_CMATCH is found in a CIGAR field.

BAM filename conventions

Since we will be using BAM format for different kinds of data, we will use a suffix.bam filename convention:

Data type Filename template
ZMW reads from movie movieName.zmws.bam
Analysis-ready subreads 1

from movie

movieName.subreads.bam

Excised adapters, barcodes, and
rejected subreads

movieName.scraps.bam

CCS reads computed from movie movieName.ccs.bam
Aligned subreads in a job jobID.aligned_subreads.bam
Aligned CCS in a job jobID.aligned_ccs.bam

1

Data in a subreads.bam file should be analysis ready, meaning that all of the data present is expected to be useful for down-
stream analyses. Any subreads for which we have strong evidence will not be useful (e.g. double-adapter inserts, single-
molecule artifacts) should be excluded from this file and placed in scraps.bam as a Filtered with an SC tag of F.

BAM sorting conventions

Aligned PacBio BAM files shall be sorted by position in the standard fashion as done by samtools sort. The BAM @HD::SO tag shall be set to
coordinate.

Unaligned PacBio BAM files shall be sorted by QNAME, so that all subreads from a ZMW hole are stored contiguously in a file, with groups by
ZMW hole number in numerical order, and within a ZMW, numerically by qStart. In case subreads and CCS reads are combined in a BAM,
the CCS reads will sort after the subreads (ccs follows {qStart}_{qEnd}). Note that this sorting is not strictly alphabetical, so we shall set the
BAM @HD::SO tag to unknown.

Use of headers for file-level information

Beyond the usual information encoded in headers that is called for SAM/BAM spec, we encode special information as follows.

@RG (read group) header entries:

ID tag (identifier)
contains an 8-character string interpretable as the hexadecimal representation of an integer. Read groups should have
distinct ID values.

Note:  Read group identifiers for PacBio data are calculated as follows:

  v: 5.1 



3/11/2020 BAM format specification for PacBio — PacBioFileFormats 5.1.0 documentation

https ://pacbiofileformats.readthedocs.io/en/5.1/BAM.html 3/7

RGID_STRING := md5(movieName + "//" + readType))[:8]
RGID_INT    := int32.Parse(RGID_STRING)

where movieName is the moviename (@RG::PU) and readType is the read type (found in @RG::DS). Note that
movieName is lowercase while readType is uppercase. md5 is understood to be the (lowercase) hex md5 digest of the
input string.

RGID_STRING is used in the @RG header and in the RG tag of BAM records, while RGID_INT is used in the PacBio
BAM index file.

Note that RGID_INT may be negative.

Example: CCS reads for a movie named “movie32” would have
RGID_STRING = “f5b4ffb6”
RGID_INT = -172687434

PL tag (“platform”):
contains "PACBIO"

PM tag (“platform model”)
contains "ASTRO", "RS", or "SEQUEL", reflecting the PacBio instrument series

PU tag (“platform unit”):
contains the PacBio movie name.

DS tag (“description”):
contains some semantic information about the reads in the group, encoded as a semicolon-delimited list of “Key=Value”
strings, as follows:

Mandatory items:

Key Value spec Value example
READTYPE One of ZMW, HQREGION, SUBREAD, CCS, SCRAP, or

UNKNOWN
SUBREAD

BINDINGKIT Binding kit part number 100236500

SEQUENCINGKIT Sequencing kit part number 001558034

BASECALLERVERSION Basecaller version number 2.1

FRAMERATEHZ Frame rate in Hz 100

CONTROL TRUE if reads are classified as spike-in controls, otherwise
CONTROL key is absent

TRUE

Note:  The READTYPE values encountered in secondary analysis will be limited to SUBREAD and CCS. The
remaining READTYPE values will only be encountered in intermediate steps before secondary analysis.

Base feature manifest—absent item means feature absent from reads:

Key Value spec Value example
DeletionQV Name of tag used for DeletionQV dq

DeletionTag Name of tag used for DeletionTag dt

InsertionQV Name of tag used for InsertionQV iq

MergeQV Name of tag used for MergeQV mq

SubstitutionQV Name of tag used for SubstitutionQV sq

SubstitutionTag Name of tag used for SubstitutionTag st

Ipd:Frames Name of tag used for IPD, in raw frame count. ip

Ipd:CodecV1 Name of tag used for IPD, compressed according to Codec
V1.

ip

PulseWidth:Frames Name of tag used for PulseWidth, in raw frame count. pw

  v: 5.1 



3/11/2020 BAM format specification for PacBio — PacBioFileFormats 5.1.0 documentation

https ://pacbiofileformats.readthedocs.io/en/5.1/BAM.html 4/7

Key Value spec Value example
PulseWidth:CodecV1 Name of tag used for PulseWidth, compressed according to

Codec V1.
pw

Optional items:

Note:  These items are optional if there are no “bc” tags in the reads belonging to this read-group, otherwise they are
mandatory.

Key Value spec Value example
BarcodeFile Name of the Fasta file containing the sequences

of the barcodes used
pacbio_384_barcodes.fasta

BarcodeHash The MD5 hash of the contents of the barcoding
sequence file, as generated by the md5sum
commandline tool

0a294bb959fc6c766967fc8beeb4d88d

BarcodeCount The number of barcode sequences in the
Barcode File

384

BarcodeMode Experimental design of the barcodes Must be
Symmetric/Asymmetric/Tailed or None

Symmetric

BarcodeQuality The type of value encoded by the bq tag Must be
Score/Probability/None

Probability

Use of read tags for per-read information

Tag Type Description
qs i 0-based start of query in the ZMW read (absent in CCS)
qe i 0-based end of query in the ZMW read (absent in CCS)
zm i ZMW hole number
np i NumPasses (1 for subreads, variable for CCS—encodes number of complete passes of the

insert)
rq f Float in [0, 1] encoding expected accuracy
sn B,f 4 floats for the average signal-to-noise ratio of A, C, G, and T (in that order) over the

HQRegion

Use of read tags for per-read-base information

The following read tags encode features measured/calculated per-basecall. Unlike SEQ and QUAL, aligners will not orient these tags. They will
be maintained in native orientation (in the same order and sense as collected from the instrument) even if the read record has been aligned
to the reverse strand.

Tag Type Description
dq Z DeletionQV
dt Z DeletionTag
iq Z InsertionQV
mq Z MergeQV
sq Z SubstitutionQV
st Z SubstitutionTag
ip B,C or B,S IPD (raw frames or codec V1)
pw B,C or B,S PulseWidth (raw frames or codec V1)

Notes:

QV metrics are ASCII+33 encoded as strings
DeletionTag and SubstitutionTag represent alternate basecalls, or “N” when there is no alternate basecall available. In other words,
they are strings over the alphabet “ACGTN”.
Encoding of kinetics features (ip, pw) is described below.

How to annotate scrap reads
  v: 5.1 



3/11/2020 BAM format specification for PacBio — PacBioFileFormats 5.1.0 documentation

https ://pacbiofileformats.readthedocs.io/en/5.1/BAM.html 5/7

Reads that belong to a read group with READTYPE=SCRAP have to be annotated in a hierarchical fashion:

1. Classification with tag sz occurs on a per ZMW level, distinguishing between spike-in controls, sentinels of the basecaller, malformed
ZMWs, and user-defined templates.

2. A region-wise annotation with tag sc to label adapters, barcodes, low-quality regions, and filtered subreads.

Tag Type Description
sz A ZMW classification annotation, one of N:=Normal, C:=Control,

M:=Malformed, or S:=Sentinel 1

sc A Scrap region-type annotation, one of A:=Adapter, B:=Barcode,
L:=LQRegion, or F:=Filtered 2

1

reads in the subreads/hqregions/zmws.bam file are implicitly marked as Normal, as they stem from user-defined
templates.

2

sc tags ‘A’, ‘B’, and ‘L’ denote specific classes of non-subread data, whereas the ‘F’ tag is reserved for subreads that are
undesirable for downstream analysis, e.g., being artifactual or too short.

QUAL

The QUAL field in BAM alignments is intended to reflect the reliability of a basecall, using the Phred-encoding convention, as described in the
SAM spec.

Both CCS and raw read BAM files respect this convention; historically, and for the present moment, the encoded probability reflects the
confidence of a basecall against alternatives including substitution, deletion, and insertion.

*We expect that more details will follow here in a later spec
revision.*

Subread local context

Some algorithms can make use of knowledge that a subread was flanked on both sides by adapter or barcode hits, or that the subread was
in one orientation or the other (as can be deduced when asymmetric adapters or barcodes are used).

To facilitate such algorithms, we furnish the cx bitmask tag for subread records. The cx value is calculated by binary OR-ing together values
from this flags enum:

enum LocalContextFlags
{ 

 ADAPTER_BEFORE = 1, 
 ADAPTER_AFTER  = 2, 
 BARCODE_BEFORE = 4, 
 BARCODE_AFTER  = 8, 
 FORWARD_PASS   = 16, 
 REVERSE_PASS   = 32

};

Orientation of a subread (designated by one of the mutually exclusive FORWARD_PASS or REVERSE_PASS bits) can be reckoned only if either the
adapters or barcode design is asymmetric, otherwise these flags must be left unset. The convention for what is considered a “forward” or
“reverse” pass is determined by a per-ZMW convention, defining one element of the asymmetric barcode/adapter pair as the “front” and the
other as the “back”. It is up to tools producing the BAM to determine whether to use adapters or barcodes to reckon the orientation, but if
pass directions cannot be confidently and consistently assessed for the subreads from a ZMW, neither orientation flag should be set. Tools
consuming the BAM should be aware that orientation information may be unavailable for subreads in a ZMW, but if is available for any
subread in the ZMW, it will be available for all subreads in the ZMW.

The ADAPTER_* and BARCODE_* flags reflect whether the subread is flanked by adapters or barcodes at the ends.

This tag is mandatory for subread records, but will be absent from non-subread records (scraps, ZMW read, CCS read, etc.)

Tag Type Description
cx i Subread local context

Flags

  v: 5.1 



3/11/2020 BAM format specification for PacBio — PacBioFileFormats 5.1.0 documentation

https ://pacbiofileformats.readthedocs.io/en/5.1/BAM.html 6/7

Barcode analysis

In multiplexed workflows, we record per-subread tags representing the barcode call and a score representing the confidence of that call. The
actual data used to inform the barcode calls—the barcode sequences and associated pulse features—will be retained in the associated
scraps.bam file, so that bam2bam can be used at a later time to reconstitute the full-length ZMW reads in order, for example, to repeat barcode
calling with different options.

Tag Type Description
bc B,S Barcode Calls (per-ZMW)
bq i Barcode Quality (per-

ZMW)

Both the bc and bq tags are calculated per-ZMW, so every subread belonging to a given ZMW should share identical bc and bq values.
The tags are also inter-depedent, so if a subread has the bc tag, it must also have a bq tag and vise-versa. If the tags are present for
any subread in a ZMW, they must be present for all of them. In the absence of barcodes, both the bc and bq tags will be absent
The bc tag contains the barcode call, a uint16[2] representing the inferred forward and reverse barcodes sequences (as determined
by their ordering in the Barcode FASTA), or more succinctly, it contains the integer pair . Integer codes represent 0-based
position in the FASTA file of barcodes.
The integer (int) bq tag contains the barcode call confidence. If the BarcodeQuality element of the header is set to Score, then the tag
represents the mean normalized sum of the calculated Smith-Waterman scores that support the call in the bc tag across all subreads.
For each barcode, the sum of the Smith-Waterman score is normalized by the length of the barcode times the match score, then
multiplied by 100 and rounded; this provides an integer value between 0 - 100. On the other hand, if the value of the header-tag is
Probability instead, then the tag value is a the Phred-scaled posterior probability that the barcode call in bc is correct. In both cases,
the value will never exceed the int8 range, but for backward-compatibility reasons we keep the BAM bq as int. This contract allows
the PBI to store bq as a much smaller int8`.

Barcode information will follow the same convention in CCS output (ccs.bam files).

Examples (subreads)

Scenario bc bq cx

No barcodes, end-to-end, unknown orientation absent absent 1|2 = 3

Asymmetric barcodes, end-to-end, forward pass { 1, 37 } 35 1|2|4|8|16 = 31

Symmetric barcodes, end-to end { 8, 8 } 33 1|2|4|8 = 15

Barcoded, HQ region terminates before second
barcode; unknown orientation

{ 8, 8 } 33 1|4 = 5

Alignment: the contract for a mapper

An aligner is expected to accept BAM input and produce aligned BAM output, where each aligned BAM record in the output preserves intact
all tags present in the original record. The aligner should not attempt to orient or complement any of the tags.

(Note that this contrasts with the handling of SEQ and QUAL, which are mandated by the BAM/SAM specification to be (respectively)
reverse-complemented, and reversed, for reverse strand alignments.)

Alignment: soft-clipping

In the standard production configuration, PacBio’s aligners will be used to align either subreads or CCS reads. In either case, we will use soft
clipping to preserve the unaligned bases at either end of the query in the aligned BAM file.

Encoding of kinetics pulse features

Interpulse duration (IPD) and pulsewidth are measured in frames; natively they are recorded as a uint16 per pulse/base event. They may be
encoded in BAM read tags in one of two fashions:

losslessly as an array of uint16; necessary for PacBio-internal applications but entails greater disk space usage.
lossy 8-bit compression stored as a uint8 array, following the codec specified below (“codec V1”). Provides a substantial
disk-space savings without affecting important production use cases (base modification detection).

,BF BR

  v: 5.1 



3/11/2020 BAM format specification for PacBio — PacBioFileFormats 5.1.0 documentation

https ://pacbiofileformats.readthedocs.io/en/5.1/BAM.html 7/7

In the default production instrument configuration, the lossy encoding will be used. The instrument can be switched into a mode (PacBio-
internal mode) where it will emit the full lossless kinetic features.

The lossy encoding for IPD and pulsewidth values into the available 256 codepoints is as follows (codec v1):

Frames Encoding
0 .. 63 0, 1, .. 63
64, 66, .. 190 64, 65, .. 127
192, 196 .. 444 128, 129 .. 191
448, 456, .. 952 192, 193 .. 255

In other words, we use the first 64 codepoints to encode frame counts at single frame resolution, the next 64 to encode the frame counts at
two-frame resolution, and so on. Durations exceeding 952 frames are capped at 952. Durations not enumerated in “Frames” above are
rounded to the nearest enumerated duration then encoded. For example, a duration of 194 frames would round to 196 and then be encoded
as codepoint 129.

This encoding has the following features, considered essential for internal analysis use cases:

Exact frame-level resolution for small durations (up to 64 frames)
Maximal representable duration is 9.52 seconds (at 100fps), which is reasonably far into the tail of the distributions of these metrics.
Analyses of “pausing” phenomena may still need to account for this censoring.

A reference implementation of this encoding/decoding scheme can be found in pbcore.

Unresolved issues

Need to move from strings to proper array types for QVs
‘/’ preferable to ‘:’ in “IPD:CodecV1”
Desire for spec for shorter movienames, especially if these are ending up in QNAMEs.

  v: 5.1 


