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SUMMARY

Translation initiation in the P site occasionally occurs
at atypical (non-AUG) start codons, including those
forming a mismatch in the third (wobble) position.
During elongation, however, a pyrimidine-pyrimidine
wobble mismatch may trigger a translation quality-
control mechanism, whereby the P-site mismatch is
thought to perturb the downstream A-site codon or
the decoding center, thereby reducing translation
fidelity and inducing termination of aberrant trans-
lation. We report a crystal structure of the 70S initia-
tion complex containing an AUC codon in the ribo-
somal P site. Remarkably, the ribosome stabilizes
the mismatched codon-anticodon helix, arranging
a normally disruptive cytosine-cytosine pair into a
Watson-Crick-like conformation. Translation-com-
petent conformations of the tRNA, mRNA, and de-
coding center suggest that a P-site wobble-position
mismatch in the 70S initiation complex does not
pre-arrange the mRNA or decoding center to favor
subsequent miscoding events.

INTRODUCTION

Protein synthesis, or translation, usually initiates at an AUG

start codon of an mRNA. The AUG start codon forms three

Watson-Crick base pairs with the CAU anticodon of initiator

tRNA (N-formylmethionyl-tRNAfMet in bacteria and methionyl-

tRNAi
Met in eukaryotes) in the P (peptidyl-tRNA) site of the

ribosome (Aitken and Lorsch, 2012; Simonetti et al., 2009). Ribo-

somes can, however, initiate translation on codons other than

AUG in all three domains of life. The most common non-AUG

codons contain a mismatch in the first position (Ivanov et al.,

2011; Rocha et al., 1999; Torarinsson et al., 2005; Vellanoweth

and Rabinowitz, 1992). A smaller subset of mRNAs contains a

mismatch in the second or third position. In Escherichia coli,

the efficiency of initiation at AUA, AUU, and AUC wobble-posi-

tion mismatched codons is at least 5% of that of AUG-depen-

dent initiation (Romero and Garcia, 1991). An AUC codon within

the open reading frame can be used as an alternative initiation

codon (Chalut and Egly, 1995). In eukaryotes, a subset of

mRNAs also initiate at an AUC codon (Ivanov et al., 2011; Olsen,

1987). Whereas non-AUG initiation has been shown to be
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remarkably prevalent (Ingolia et al., 2009; Ivanov et al., 2011),

the structural basis of recognition of non-AUG initiation codons

by the initiator tRNA in the P site is unknown.

During translation elongation, the decoding of elongator

tRNAs takes place in the A (aminoacyl-tRNA) site. Here, the first

two nucleotides of each codon form Watson-Crick base-pair

interactions with the last two nucleotides of a cognate tRNA anti-

codon, stabilized by interactions with universally conserved

nucleotides of 16S rRNA A1492 and A1493 (E. coli numbering)

(Demeshkina et al., 2012; Ogle et al., 2001, 2003). The third

nucleotide of the codon, called the wobble position, can form a

non-Watson-Crick base pair with the first nucleotide of the

tRNA anticodon.Wobble pairs, including purine-purine (e.g., ino-

sine-adenosine) or purine-pyrimidine (e.g., guanosine-uridine),

can adopt a Watson-Crick-like geometry (Murphy and Ramak-

rishnan, 2004) or non-Watson-Crick geometry characteristic of

the G-U pair (Demeshkina et al., 2012). The relaxed base-pair

criteria at the wobble position result in a redundant genetic

code, in which multiple codons encode the same amino acid

(Crick, 1966).

The relaxed base-pairing criteria at the wobble position can,

however, lead to miscoding by near-cognate tRNAs (Woese,

1967; Zhang et al., 2013). These include tRNAs that form pyrim-

idine-pyrimidine pairs, which are less energetically stable than

wobble pairs (Davis and Znosko, 2007; Gralla and Crothers,

1973; Kierzek et al., 1999). Such tRNAs can bind the A site under

cellular stress conditions. During asparagine starvation, for

example, the ribosome misreads the AAU and AAC asparagine

codons by accommodation of tRNALys, whose anticodons

(CUU or UUU) differ from tRNAAsn anticodon sequences (AUU

or GUU) at the wobble position (Johnston et al., 1984; Parker

et al., 1980, 1978). A similar phenomenon was observed in the

case of histidine codons, and was also interpreted as a result

of a pyrimidine-pyrimidine miscoding in the wobble position

(O’Farrell, 1978). In ‘‘relaxed’’ bacterial strains, which are

incapable of initiating nutrient-deprivation-caused stringent

response (Laffler and Gallant, 1974; Stent and Brenner, 1961),

pyrimidine-pyrimidine miscoding upon asparagine starvation

becomes nearly as frequent as correct pairing (Johnston et al.,

1984; Parker et al., 1980).

Following translocation, a wobble-mismatch-containing pep-

tidyl-tRNA in the P site can dramatically reduce the fidelity of

subsequent aminoacyl-tRNA selection, such that the A site

accommodates a near-cognate tRNA almost as efficiently as

a cognate tRNA (Zaher and Green, 2010). Furthermore, the

loss of decoding fidelity in mismatched complexes results

in stop-codon-independent termination by release factor RF2,
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Figure 1. Crystal Structure of the

T. thermophilus 70S Ribosome Containing

a C-C Mismatch in the Wobble Position of

the P Site

(A) The ribosome crystal structure. The subunits

are shown in gray (50S) and cyan (30S); mRNA is

yellow, P-site tRNA is green, and E-site tRNA is

pink. The C-C mismatch is highlighted in red.

(B) 2Fo � Fc electron density (gray mesh) for the

ribosomal P site. The colors of the structural model

are as shown in (A).

(C) The packing and hydrogen-bonding in-

teractions that stabilize the C-Cmismatch. The van

der Waals surface (gray) shows stacking in-

teractions of the C-C pair (red) with the second

codon-anticodon pair and ribosomal nucleotides

C1400 and G966.
enhanced by the auxiliary release factor RF3 (Petropoulos et al.,

2014; Zaher and Green, 2009). Stop-codon-independent termi-

nation in E. coliwas proposed to underlie a quality control, which

aborts protein synthesis if amino acids are misincorporated

(Zaher and Green, 2009). Miscoding in the A site caused by a

pyrimidine-pyrimidine mismatch in the P site is thought to result

from conformational changes in the downstream A-site codon or

the ribosomal decoding center. Kinetic studies suggest that

tRNALys (UUU) miscoding of an AAU asparagine codon (i.e.,

U-U wobble mismatch) is mechanistically similar to miscoding

caused by streptomycin (Gromadski and Rodnina, 2004; Zaher

and Green, 2010). Streptomycin binds the decoding center and

induces significant conformational changes, including the shift

of the 16S rRNA nucleotides A1492 and A1493, which stabilize

the tRNA-mRNA helix (Demirci et al., 2013). Whether a pyrimi-

dine-pyrimidine wobble mismatch induces structural changes

in the bacterial 70S ribosome, however, has not been tested.

To gain insight into non-AUG initiation and structural effects

of a pyrimidine-pyrimidine mismatch, we have determined a

3.6-Å crystal structure of the bacterial 70S initiation complex

containing a cytosine-cytosine (C-C)mismatch in thewobble po-

sition of the P site (Figure 1). We chose a C-Cmismatch because
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it is the weakest pyrimidine-pyrimidine pair, which exhibits devi-

ation from base-pair co-planarity (Tavares et al., 2009) and im-

parts the most instability to nucleic acid structures in solution

(Figure 2A; Battle and Doudna, 2002; Gralla and Crothers, 1973).

RESULTS

We report a crystal structure of the Thermus thermophilus 70S

ribosome containing initiator tRNAfMet (CAU anticodon) bound

with an mRNA containing an AUC codon in the P site (Figure 1

and Table 1). The mRNA (50-GGC AAG GAG GUA AAA AUC

UAA AAA AAA-30) included a 50 Shine-Dalgarno sequence (Dal-

garno and Shine, 1973; Shine and Dalgarno, 1974), followed

by a four-nucleotide linker, to help position the AUC codon in

the ribosomal P site (Korostelev et al., 2007; Yusupova et al.,

2006). In the resulting structure, well-ordered mRNA nucleotides

were modeled in the E (exit), P, and A sites, whereas the flanking

mRNA regions, including the Shine-Dalgarno sequence, were

not modeled due to disorder (Laurberg et al., 2008; Polikanov

et al., 2014; Selmer et al., 2006; Svidritskiy et al., 2013).

We also used E. coli RF1 and blasticidin S in crystallization solu-

tions, hypothesizing that they could help stabilize the complex.
Figure 2. The Effect of the C-CMismatch on

RNA Structure

(A) Solution nuclear magnetic resonance structure

(slate blue) of an RNA hairpin containing a C-C

mismatch (PDB: 2RPT; Tavares et al., 2009) shows

that the cytosines (red) deviate from co-planarity

and induce a large deviation of RNA conformation

from that of an A-form double helix (gray).

(B) The C-C mismatch (red) in the 70S P site

does not disrupt the A-form RNA geometry of

the codon-anticodon helix, which resembles the

(CCG)n-repeat double helix (purple; PDB: 4E59;

Kiliszek et al., 2012). In the (CCG)n-repeat double

helix, the C-C mismatch is stabilized by in-

teractions with the flanking G-C pairs, which are

part of the crystal-lattice-stabilized system of the

stacked base pairs. 16S rRNA is cyan, mRNA is

yellow, and P-site tRNA is greenwith the exception

of the C-C mismatch, which is shown in red.
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Table 1. Data Collection and Structure Refinement Statistics

Data Collection

Space group P212121

Cell dimensions

a, b, c (Å) 211.72, 452.97, 620.15

a, b, g (�) 90, 90, 90

Resolution (Å) 3.63 (3.63–3.83)a

Rpim
b 0.24 (1.6)

CC1/2
c 99.7 (42.6)

I/sI 5.7 (1.0)

Completeness (%) 99.3 (99.3)

Redundancy 10.5 (10.5)

Structure Refinement

Resolution (Å) 60–3.63

No. of reflections 661,200

Rwork/Rfree 0.268/0.287

Total no. of atoms 295,628

Ions/water (modeled as Mg2+) 2,218

Root-mean-square deviations

Bond lengths (Å) 0.002

Bond angles (�) 0.542
aValues in parentheses indicate the highest-resolution shell.
bRpim (precision-indicatingmergingR factor;Weiss, 2001) was calculated

using SCALA, which is part of the Collaborative Computational Project

Number 4 (1994) software package.
cCC1/2 is the percentage of correlation between intensities from random

half-datasets as defined by Karplus and Diederichs (2012).
However, neither RF1 nor blasticidin S was found in the resulting

Fourier difference maps. The lack of binding could be due to

competition between these two molecules (Svidritskiy et al.,

2013), and/or because they were not added in cryoprotection

buffer-exchange steps, which may have resulted in ligand or

factor dissociation (Gagnon et al., 2012).

Interactions in the P Site of the 30S Subunit
The 70S ribosome structure containing the C-C mismatch is

globally similar to the canonical 70S initiation complex contain-

ing tRNAfMet bound to an AUGcodon (Jenner et al., 2010; Svidrit-

skiy et al., 2013), indicating that the wobble-position C-C

mismatch does not affect the conformations of the ribosome

or individual subunits during initiation.

The mRNA-tRNA duplex in the P site adopts a nearly perfect

A-form conformation (Figure 2B). The phosphate backbones of

both the mRNA and tRNA are positioned similarly to those in

the 70S structures containing the start AUG codon and tRNAfMet

(Jenner et al., 2010; Svidritskiy et al., 2013). The mRNA nucleo-

tides A1, U2, and C3 face the tRNA anticodon nucleotides

U36, A35, and C34, respectively (Figures 1B and 1C). The first

two nucleotides of the P-site codon form canonical Watson-

Crick base pairs. The cytosine in the third position of the codon

is nearly co-planar to C34 of the tRNA anticodon, similar to a ca-

nonical Watson-Crick base pair (Korostelev et al., 2006; Selmer

et al., 2006). The positions of the well-resolved cytidines suggest

that the bases interact via weak hydrogen bonding between the
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exocyclic amino group of the tRNA cytosine and the N3 atom of

the mRNA cytosine (Figure 1C).

Base stacking and backbone interactions stabilize the C-C

mismatch pair (Figure 1C). The universally conserved nucleotide

C1400 of the 16S rRNA renders the stacking foundation for both

cytosines. The ribose of C1400 forms the platform for the base of

C3, while the base of C1400 stacks on the cytosine of C34. The

U-A base pair at the second position of the codon forms base

stacking interactions on the opposite side of the C-C mismatch.

The distances between the planes formed by stacked nucleo-

tides U2-A35, C3-C34, and C1400 are �3.5 Å or less, similar

to those for the stacked base pairs of an A-form helix (Figure 2B).

This further indicates that base-pair planarity parameters, such

as buckle and propeller dihedral angles, for the cytosine pair

are close to those for co-planar Watson-Crick base pairs. The

nucleic acid backbones of the mismatch cytidines are also sta-

bilized by interactions with 16S rRNA nucleotides. The phos-

phate group of C3 is held in place by the amino groups of the

conserved C1402 and C1403, while the ribose of C34 stacks

on the base of G966 (Figure 1C).

Conformation of the Downstream A-Site Codon and
Decoding Center
In previous crystal structures of ribosome complexes formed

with fully cognate tRNAs or release factors, the path of mRNA

kinks sharply between the P and A sites; the kink is stabilized

by a magnesium ion coordinating with the backbone of mRNA

and 16S rRNA (Figure 3; Selmer et al., 2006). The mRNA nucle-

otides adopt similar conformations in the absence (Jenner

et al., 2010) or presence (Selmer et al., 2006) of cognate tRNA

in the A site, although the A-site codon and the ribosomal nucle-

otides of the decoding center are usually less well resolved in

crystal structures determined in the absence of A-site ligands,

such as tRNA, release factors, or aminoglycoside antibiotics

(Bulkley et al., 2014; Korostelev et al., 2006; Schuwirth et al.,

2005). Previous structural studies have shown that the nucleo-

tides of the ribosomal decoding center undergo structural

rearrangements to stabilize the codon interactions with amino-

acyl-tRNA (Figure 3A; Ogle et al., 2001; Selmer et al., 2006) or

release factors (Figure 3B; Jin et al., 2010; Korostelev et al.,

2008, 2010; Laurberg et al., 2008; Weixlbaumer et al., 2008).

Because the P-site wobble position is immediately adjacent

to the kink between the P and A codons, a mismatch pair in

the wobble position was predicted to perturb the conformation

of the A-site codon or decoding center, resulting in reduced

translation fidelity (Zaher and Green, 2010).

In our 70S structure, we find that even in the presence of a

P-site wobble-position mismatch, the mRNA path in the A site

does not deviate from the path observed in structures formed

with a fully cognate tRNA in the P site. The mRNA used in this

study contained a UAA codon following the mismatch AUC

codon. In an unbiased Fourier difference density map, strong

density for the first two nucleotides (U4 and A5) of the A-site

codon reveals that the mRNA forms a sharp kink, between the

P- and A-site codons, which is stabilized by a magnesium ion

(Figures 3C and 3D), as in crystal structures of cognate com-

plexes (Jenner et al., 2010; Selmer et al., 2006).

Since the UAA codon signals translation termination, we have

compared our structure with 70S crystal structures in which the
61, November 3, 2015 ª2015 Elsevier Ltd All rights reserved 2157



Figure 3. Comparison of 70SRibosomeCrystal Structures Showing theRibosomal A-Site DecodingCenter in the Presence of Cognate tRNA,

Release Factor RF2, or the Preceding P-site C-C Mismatch

23S rRNA is shown in gray, 16S rRNA in cyan, mRNA in yellow, and P-site tRNA in green.

(A) Conformation of the decoding center in the presence of cognate tRNAPhe (magenta) bound to the A site (PDB: 2J00; Selmer et al., 2006).

(B) Conformation of the decoding center in the presence of the release factor RF2 (magenta) bound in response to a UAA stop codon (PDB: 3F1E; Korostelev

et al., 2008).

(C) Conformation of the vacant decoding center in the 70S C-C mismatch complex (this work). The C-C mismatch is shown in red.

(D) Fo � Fc simulated annealing omit map (gray) shows unbiased density of the decoding center (this work). The C-C mismatch is shown in red.
A-site UAA codon is bound by RF1 or RF2 (Korostelev et al.,

2008; Laurberg et al., 2008). Release factors induce a confor-

mational change in the A-site codon, displacing the first two

nucleotides by more than 2 Å from their corresponding

‘‘sense-codon’’ positions and unstacking the third nucleotide

from the first two bases. In our structure, however, the first two

nucleotides of the A-site codon adopt the positions distinct

from those in the RF1- and RF2-bound complexes. Specifically,

their placement is nearly identical to that of sense-codon nucle-

otides. The density for the third nucleotide is weak, consistent

with conformational flexibility of the third nucleotide, as reported

by the crystal structures containing sense codons in the A site

(e.g., PDB: 3I9B, 3I9D, 4QCY, and 4QD0; Jenner et al., 2010;

Polikanov et al., 2014). Thus, although the UAA codon encodes

a termination signal, its position and conformation in the absence

of the release factors are for the most part similar to those of a

sense codon.

To visualize the effect of the C-C mismatch on the A-site

conformation in detail, we compared our structure with the

recent 70S initiation structure, containing the same mRNA

sequence aside from a cognate AUG codon in the P site (Svidrit-

skiy et al., 2013). We found that the A-site nucleotide densities of

the cognate complex and the mismatch complex are nearly

equivalent. In line with the absence of large conformational

rearrangements in the P- and A-site codons, the structure of

the ribosomal decoding center is also unchanged. Specifically,

nucleotides A1492 and A1493 of 16S rRNA, which are involved

in tRNA decoding via A-minor interactions with the codon-anti-

codon helix (Figure 3A; Demeshkina et al., 2012; Ogle et al.,

2001, 2003), in our structure are docked inside helix 44 and

contact the tip of helix 69 of 23S rRNA (residue A1913), as in

cognate complexes with a vacant A site (Bulkley et al., 2014;

Jenner et al., 2010; Svidritskiy et al., 2013). Although electron

density indicates that these nucleotides in our and cognate com-

plexes are more dynamic than in the complexes containing an

A-site ligand, it is clear that they are not pre-ordered (Figure 3C)

for formation of a tRNA-bound or RF2-bound states, in both of

which A1492 is flipped out of helix 44 to interact with G530 (Fig-

ures 3A and 3B).

In summary, our structure shows that despite a potentially de-

stabilizing C-C mismatch immediately before the A-site codon,
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the A-site codon and decoding center adopt a canonical confor-

mation observed in 70S complexes formed with a cognate P-site

codon.

DISCUSSION

In this work, we examined the structural consequences of a

pyrimidine-pyrimidine mismatch in the wobble position of the

P site. Our findings contrast with solution studies of structured

nucleic acids containing a C-C mismatch. C-C mismatches

impart a large energetic penalty of up to �11 kcal/mol (Battle

and Doudna, 2002), and destabilize secondary and tertiary

structures (Battle and Doudna, 2002; Cate et al., 1996; Gralla

and Crothers, 1973). In a nuclear magnetic resonance structure

of an RNA hairpin (Tavares et al., 2009), for example, the mis-

matched cytosines are out of plane, dramatically widening the

major groove and distorting the helical axis by up to 45� (Fig-

ure 2A). In our 70S ribosome structure, however, the nearly co-

planar orientation and relative positions of C3 and C34 closely

resemble the mismatched C-C pairs observed in the crystal

structure of an A-form helix formed by CCG-repeat RNA mole-

cules (Figure 2B). The A-helix conformation in the (CCG)n duplex

is likely stabilized by the continuous base stacking owing to crys-

tal packing, and locally by the stacking with guanosine-cytosine

base pairs on either side of the C-C mismatch (Kiliszek et al.,

2012). Superposition of the (CCG)n structure with the codon-

anticodon helix in our 70S structure shows that the U2-A35

pair and C1400, which sandwich the C-C pair in the ribosome,

provide a stacking foundation somewhat similar to that rendered

by the C-G and G-C Watson-Crick pairs flanking the C-C

mismatch in the A-form helix (Figure 2B). The notable difference

between these two structures is that the ribosome does not

contain a long system of stacked and base-paired nucleotides

as in the (CCG)n helix. Instead, universally conserved nucleotides

of the small ribosomal subunit provide a scaffold that stabilizes

both the backbone and bases of the wobble-position nucleo-

tides, allowing the non-canonical C-C pair to adopt a nearly

co-planar conformation that resembles a Watson-Crick pair.

The initiator-tRNA-specific properties, such as the three consec-

utive G-C pairs that are conserved in the anticodon stem and

interact with the conserved 16S nucleotides G1338 and A1339
All rights reserved



(Korostelev et al., 2006; Selmer et al., 2006), further contribute to

the stability of initiation complexes (Dong et al., 2014; Lancaster

and Noller, 2005).

The conformation of the A site, immediately downstream of the

C-C mismatch, is poised to continue normal translation rather

than to accommodate subsequent anomalies, such as reduced

fidelity of tRNA selection and RF2-induced stop-codon-inde-

pendent termination. Thus, the P-site wobble-position mismatch

does not pre-arrange the mRNA or decoding center for miscod-

ing, rendering a non-AUG initiation complex translation compe-

tent. It is notable that the wobble mismatch in such initiation

complexes occurs in the context of the A-U and U-A pairs

formed at the first and second positions of the codon, respec-

tively. These base pairs confer low structural stability to a double

helix, and the neighboring C-C mismatch is expected to sub-

stantially destabilize the base-pairing interactions in the short

codon-anticodon helix. In fact, studies on helix-forming oligonu-

cleotides have shown that insertion of the C-C mismatch in

the middle of a A-U- and U-A-paired double helix completely

abrogates a 10-bp-long double helix formation at 25�C (Gralla

and Crothers, 1973). Our structure demonstrates the critical

role of the ribosomal P site in providing a highly stable scaffold

to stabilize even weak mRNA-tRNA interactions, in keeping

with the role of the P site in establishing and maintaining an

mRNA reading frame.

Our structure also provides a framework for understanding the

mechanism of the post-peptidyl-transfer quality control during

elongation. The preservation of the A and P site conformations

appears to argue against a structural mechanism, in which

P-site wobble mismatch induces conformational changes to

the mRNA or decoding center to pre-arrange the decoding

center for miscoding. We note that only a U-U mismatch has

been studied in detail biochemically (Petropoulos et al., 2014;

Zaher and Green, 2009, 2010); kinetic analyses of translational

infidelity are lacking for other mismatches. A U-U mismatch is

favorable for RNA helix stability (Mathews et al., 2004; Schroeder

et al., 1996), since uracil pairs can form direct and water-medi-

ated hydrogen bonds in RNA duplexes (Kiliszek and Rypniewski,

2014 and references therein; Zoll et al., 2007). A U-U pair also

adopts a co-planar Watson-Crick-like conformation and does

not alter the A-form geometry of an RNA helix in solution (Zoll

et al., 2007). A U-U pair is the most thermodynamically stable

and most frequent pyrimidine-pyrimidine mismatch in naturally

occurring RNA structures (Davis and Znosko, 2007; Kierzek

et al., 1999). These observations, therefore, suggest that a U-U

mismatch is even less likely than a C-C mismatch to induce

substantial conformational changes that pre-arrange the A site

for miscoding.

Rather than pre-arranging the mRNA or decoding center for

miscoding, it is possible that the P-site mismatch interferes

with elongation factor thermo-unstable (EF-Tu)-dependent

aminoacyl-tRNA loading and release-factor binding at the A

site. For example, the P-site mismatch could affect transient

conformations, normally sampled during aminoacyl-tRNA or

release-factor binding, thus altering the energy landscape of

A-site accommodation. This mechanistic model is consistent

with kinetic studies that examined how a P-site mismatch in

elongation complexes influences the selection of near-cognate

aminoacyl-tRNA (Zaher and Green, 2010). The association rate
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(kon) of a near-cognate ternary complex (aminoacyl-tRNA∙EF-
Tu∙guanosine triphosphate [GTP]) with the A site was not

influenced by the mismatch, suggesting that mismatched and

matched complexes share similar association mechanisms. By

contrast, the dissociation rate (koff) of near-cognate ternary com-

plex frommismatched P-site ribosomes was reduced�100-fold

relative to that of near-cognate ternary complex from a matched

P-site ribosome, largely accounting for the reduced fidelity of

aminoacyl-tRNA selection. Moreover, the rate of GTP hydrolysis

by EF-Tu is increased on mismatched complexes by �10-fold,

enhancing the efficiency of near-cognate tRNA accommodation.

Together, these biochemical studies and our structure suggest

that the mismatch-induced effects take place in the course of

interaction of a near-cognate ligand with the A site.

Additional work is required to test the proposed post-peptidyl

transfer quality-control mechanism. While our 70S initiation

complex provides, to our knowledge, the initial visualization of

the wobble mismatch effects, structural studies of bona fide

elongation complexes prone to translational infidelity are neces-

sary to capture states along the A-site misincorporation trajec-

tory. Furthermore, the extent to which mismatch-induced quality

control is present and mechanistically conserved among bacte-

ria remains to be established. The universal conservation of the

ribosome decoding-center structure and decoding mechanism

(Ogle et al., 2001; Wilson and Doudna Cate, 2012) suggests

mechanistic similarity for the quality control. However, strain-

specific variability in the termination aspect of the quality control

in E. coli (O’Connor, 2015) and the strong dependence on the

non-essential release factor RF3, which is absent from some

bacteria including T. thermophilus, suggest that the termination

of aberrant translation might only be employed or mechanisti-

cally conserved in a subset of bacteria. In summary, further

genetic, structural, and biochemical studies involving U-U,

C-C, and other mismatches are required to delineate the

affected A-site accommodation steps and determine the extent

to which tRNA miscoding and termination are shared by P-site

mismatches.

EXPERIMENTAL PROCEDURES

Crystal Structure Determination

70S ribosomes were purified from T. thermophilus HB27 as described by

Laurberg et al. (2008). To assemble the 70S complex for crystallization, we

incubated 4 mM 70S ribosomes with 2.2-fold molar excess of tRNAfMet (Chem-

ical Block) and 3-fold molar excess mRNA (50-GGC AAG GAG GUA AAA AUC

UAA AAA AAA-30, IDT) in a buffer containing 25 mM Tris$acetate (pH 7.0),

50mMpotassium acetate, 10mMammoniumacetate, and 10mMmagnesium

acetate (all concentrations in the final solution). We also added 3-fold molar

excess of E. coli release factor RF1 and 650 mM blasticidin S during the

complex formation; however, neither RF1 nor blasticidin S was found in the

resulting Fourier difference maps. Crystallization drops contained 3.1 ml of

the 70S$mRNA$tRNAfMet complex mixed with 3.1 ml of crystallization buffer

containing 0.1 M Tris-HCl (pH 7.5), 4% (v/v) polyethylene glycol 20000, 8%

(v/v) 2-methyl-2,4-pentanediol, and 0.2 M potassium thiocyanate. Crystalliza-

tion was performed by a hanging-drop vapor diffusion method using 300 ml of

0.5–0.7 M NaCl as reservoir solution. Crystals were cryoprotected in four

steps, as described by Svidritskiy et al. (2013) and flash-frozen by plunging

into liquid nitrogen.

Diffraction data were collected at beamline 23ID-B at the Advanced Photon

Source at Argonne National Laboratory using an MARmosaic 300 CCD detec-

tor at an X-ray wavelength of 1.033 Å and an oscillation angle of 0.2�. The final

dataset was obtained by merging three datasets collected from two crystals.
61, November 3, 2015 ª2015 Elsevier Ltd All rights reserved 2159



The data were integrated, merged, and scaled using XDS (Kabsch, 2010); 1%

of reflections were used as test set (Rfree set). As a starting model for molecular

replacement, the crystal structure of blasticidin-S-bound ribosome obtained

from the same crystal form (Svidritskiy et al., 2013) was used, excluding

blasticidin S, mRNA, and anticodon stem loop of the P-site tRNA. Models

of ribosomal proteins L6 and L18, for which additional density was observed

in our maps in the N- and C-terminal regions, were adopted from a 70S ribo-

some structure by Polikanov et al. (2014). The nucleotides of tRNA, mRNA,

and the decoding center were built into the initial Fo � Fc and 3Fo � 2Fc differ-

ence maps. PHENIX (Adams et al., 2002) and RSRef (Korostelev et al., 2002)

were used for reciprocal-space and local-real-space simulated-annealing

refinements (Laurberg et al., 2008; Svidritskiy et al., 2014), yielding the final

structure with Rwork/Rfree of 0.268/0.287 and good stereochemical parameters

(Table 1). Non-crystallographic symmetry restraints were employed during

refinement for the two ribosomes in the asymmetric unit (Laurberg et al.,

2008). Fo � Fc and 2Fo � Fc density maps were calculated in PHENIX and

shown at s = 1.5 (Figure 3D) and s = 1.0 (Figure 1B), respectively. PyMOL

(DeLano, 2002) was used for figure rendering and structure superpositions.

The atomic coordinates and structure factors are available in the PDB (PDB:

5D8B).
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