
INTRODUCTION

Translation of mRNA into a protein begins at a start

codon – usually the AUG codon – and terminates at one

of the three stop codons: UAA, UAG or UGA [1, 2].

Efficient and accurate termination is required for the

well�timed production of proteins, ribosome recycling,

and translation initiation [3, 4]. Unlike sense codons,

which are recognized by aminoacyl�tRNAs, the stop

codons are recognized by release factors: RF1 or RF2 in

bacteria and aRF1/eRF1 in archaea/eukaryotes [5�9]. In

addition, GTPase release factors – non�essential RF3 in

some bacteria and essential aRF3/eRF3 in archaea/

eukaryotes – take part in termination, their functions dif�

fer among these domains of life. Understanding the

detailed structural mechanisms of translation termination

is important because of the fundamental role of termina�

tion in protein synthesis, illustrated by the catastrophic

consequences of mutations or other perturbations of

mRNA that lead to aberrant protein release. For example,

a major fraction of genetic disorders is caused by prema�

ture stop codons resulting in production of truncated pro�

teins and degradation of mRNA [10].

In addition to release factors, diverse RF�like pro�

teins have been recently identified in bacterial and

eukaryotic mitochondrial and cytoplasmic translation

systems that alleviate translational stress. These include

ribosome�rescue and quality�control mechanisms, which

enable recycling of ribosomes that stall on aberrant

mRNAs. The latter include truncated mRNA and mRNA

with non�optimal (rare) codons or structural features

(e.g., mRNA secondary structure or protein�binding

sites) that prevent ribosome elongation. Recognition,

peptide release, and recycling of stalled ribosomes is

accomplished by independent pathways, including ArfA

and ArfB in bacteria, mtRF1a and mtRF�R in mitochon�

dria, and Dom34 and Vms1 in eukaryotic cytoplasm.

Recent biophysical and structural studies demonstrated

the critical role of ribosome dynamics in translation, ter�

mination, and ribosome rescue. The mechanics of ribo�

some rearrangements echo the models that Alexander

Spirin proposed for ribosomal translocation along

mRNA, including the large�scale rearrangements of ribo�

somal subunits [11, 12]. These findings emphasize that

the ribosome plays a major mechanistic role in all trans�

lation steps including termination and ribosome rescue.
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TRANSLATION TERMINATION IN BACTERIA

AND MITOCHONDRIA

Release factors are bifunctional proteins: they recog�

nize stop codons and catalyze the hydrolysis of the ester

bond in peptidyl�tRNA. Bacterial release factors RF1/

RF2 independently recognize the UAA, UAG/UAA, and

UGA codons, respectively. These ∼350�380 aa�long pro�

teins comprise the codon�recognition superdomain

(domains 2 and 4), which binds the small 30S ribosomal

subunit, and the catalytic domain 3, which binds the large

50S ribosomal subunit (Fig. 1, a�c). The dynamic

domain 1 interacts with the peripheral L11 stalk of the 50S

subunit (Fig. 1, b and c) contributing to the binding of

release factors to the ribosome [13, 14]. The codon�recog�

nition superdomain carries the conserved P184XT186 (where

X is often an A, V or another short amino acid) motif in

RF1 or S206PF208 motif in RF2 [15, 16], which interact

with stop codons (E. coli residue numbers are shown for

bacterial proteins and RNA unless noted otherwise) [17�

20]. Other residues of domain 2 have also been identified

in mutational and biochemical studies to be critical for

stop�codon specificity of release factors [21, 22].

Catalytic domain 3 contains a long α�helix crowned

with the universally conserved GGQ motif (Figs. 1c and

2c), shown to play a key catalytic role in early studies

[23, 24]. Mutations of either glycine in the bacterial and

eukaryotic release factors render the release factors inac�

tive [24�26]. By contrast, the release factors with gluta�

mine mutations retain catalytic activity [25, 27, 28], with

the exception of the GGP mutant, which is inactive

[18, 29]. These studies suggest that the unique conforma�

tion of the GGQ backbone is critical for the catalytic

activity of release factors.

High�resolution crystallographic studies provided

detailed visualization of stop�codon recognition and the

catalytic mechanism of release factors on all three stop

codons [17�20] (see reviews [30�34]). Recent advances in

cryogenic electron microscopy (cryo�EM) enable deter�

mination of previously unattainable transient states of

macromolecules at near�atomic resolution. Taken

together with biochemical and biophysical observa�

tions [35�38], recent structural studies allow a nearly

complete reconstruction of the dynamic mechanism of

termination – from initial recognition of the stop codon

to hydrolysis of peptidyl�tRNA and to dissociation of the

release factor.

Dynamics of the release factors are essential for accu�
rate translation termination. In a cell, release factors can

stochastically sample the ribosomal A site carrying the

Fig. 1. Bacterial translation termination involves large�scale conformational changes. a�d) Cryo�EM structures demonstrating rearrangements

of a release factor and intersubunit rotation of a bacterial 70S ribosome upon stop�codon recognition and peptide release. E. coli RF2 is shown:

panels (b and c) [51]and d [61]. The decoding center (DC) and peptidyl transferase center (PTC) are labeled in panel (a). Crystal structure of

free RF2 is shown between panels (a) and (b) [40]. Domain organization for RF1/RF2 is shown with Arabic numerals in panel (c). e) Cryo�

EM structure of RF1 and RF3 on E. coli ribosome with P/E tRNA and rotated 30S subunit [58]. f) Cryo�EM structure of the pre�recycling

E. coli ribosome with P/E tRNA and rotated 30S subunit after dissociation of release factors [61]. g and h) Rearrangement of the codon and

decoding center (DC) upon binding of RF2 (Structure II in [61]). Stop codon and DC in panel g were modeled based on Structure I in

ref. [54]. i) Rearrangement of RF2 in the peptidyl transferase center (PTC; [61]). The catalytic conformation of RF2 with the GGQ�bearing

α�helix is shown in pink and the ribosome is shown in gray. The β�hairpin conformation of RF2 (red) coincides with movement of A2602 and

departure of tRNA (orange) from the PTC (cyan).
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sense or stop codons. To perform accurate termination,

the hydrolase function should be strictly coordinated with

stop codon recognition. This coordination is achieved by

preventing the insertion of the catalytic domain 3 into the

peptidyl transferase center (PTC) unless the codon�

recognition superdomain is accommodated in the A site

containing a stop codon. Crystal structures and solution

studies have shown that free release factors adopt a com�

pact conformation [39�42], in which the catalytic domain

is packed on the codon recognition domain (Fig. 1,

a and b). In the ribosome, however, the release factors

were captured by early structural studies in an extended

conformation (Fig. 1c), in which RF1 or RF2 in the ribo�

somal A site bridges the 30S and 50S subunits [17�

20, 43, 44]. These findings suggested an appealing

hypothesis that release factors sample the ribosomal A site

in a compact conformation, in which the GGQ motif is

positioned far from the peptidyl transferase center. The

“opening” of the release factor was proposed to occur

upon recognition of the stop codon [17, 43, 45�47].

Structural evidence for such transition has been obtained

only recently. Crystallographic work with a hyper�accu�

rate RF1 mutant and antibiotic blasticidin S (BlaS) cap�

tured the codon�recognition superdomain in the A site,

while the catalytic domain was disordered in the intersub�

unit space, in keeping with the dynamic rearrangements

of release factors on the ribosome [48]. Subsequent cryo�

EM studies visualized compact RF2 on the ribosome

bound with an alternative release factor A (ArfA; [49])

and ArfA mutant [50], highlighting affinity of the com�

pact release factor to the ribosome (Fig. 2a). ArfA assists

RF2 in recognizing ribosomes without stop codons (dis�

cussed below), so the structural dynamics of RFs on a ter�

minating ribosome remained unseen until a recent time�

resolved cryo�EM study [51]. Both RF1 and RF2 were

captured in compact inactive conformations at early time

points of the termination reaction (Fig. 1b). They

rearranged into the catalytically active extended confor�

mations at the later time points (Fig. 1c; [51]). The open�

ing of release factors is coupled with local rearrangements

of the ribosomal decoding center (i.e., 30S A site) and

peptidyl transferase center on the 50S subunit, which

together account for high accuracy of translation termi�

nation.

Local rearrangements in the decoding center and pep�
tidyl transferase center. The decoding center relies on

universally conserved residues of small ribosomal RNA –

G530, A1493 and A1493 of E. coli 16S – to accurately

decode mRNA. During elongation, these nucleotides sta�

bilize Watson–Crick base�pairing between mRNA codon

and tRNA anticodon, and account for elongation fidelity

[52�54]. These nucleotides are also essential during ter�

mination, as they facilitate the opening of the release fac�

tor to catalyze peptide release (Fig. 1, g and h; [17]).

Specifically, the “terminating” conformation of the

decoding center can accommodate the flexible linker

between the codon�recognition and catalytic domains of

RFs (Fig. 1h), which is termed the switch loop (aa ∼290�

305 in RF1 and ∼310�325 in RF2) and is flexible in the

compact release factor [51]. Recognition of a stop codon

by a release factor results in stacking of the third

nucleotide of the stop codon on G530, and rearranges

A1492 and A1493 into a termination�specific conforma�

tion (Fig. 1, g and h). Packing of the switch loop (with

Trp319 in RF2) against A1492 and A1493 directs

domain 3 into the PTC, resulting in the activated extend�

ed release factor (Fig. 1h). Consistent with the key role of

the switch loop, its mutations disrupt the dynamics of RF

opening and change the accuracy of termination [19, 48].

In the peptidyl transferase center, the GGQ motif is

positioned to catalyze the hydrolysis of the ester bond

linking the nascent peptide with P�site tRNA [17]. High�

resolution crystal structures showed that A2602, critical

for termination efficiency [55�57], assists in docking the

GGQ motif into the PTC by stacking on the conserved

Arg256 (RF1). The GGQ motif forms a short α�helix

(Fig. 1i), which presents the backbone amide of the glut�

amine near the ribose of the terminal P�tRNA nucleotide

A76. The NH group is positioned to stabilize a transition�

state intermediate and the leaving group [17], in keeping

with the essential catalytic role of the glutamine back�

bone [29].

After peptidyl�tRNA hydrolysis, both the peptide

and the release factor must dissociate from the ribosome

to allow ribosome disassembly into subunits and initiation

of a new round of translation. Two cryo�EM studies have

reported several structures that suggest conformational

rearrangements resulting in dissociation of RF1 and RF2.

An ensemble of post�release RF1�bound ribosomes was

visualized using Api137 [58], which binds the peptide

tunnel and stalls RF1 on the ribosome [59]. This complex

was formed in the presence of GTPase RF3, which stim�

ulates dissociation of RF1 [35, 60]. In the other study, an

ensemble of RF2�bound structures was resolved without

RF3, consistent with the independence of RF2 dissocia�

tion on RF3 [35]. The structures visualized retraction of

the deacylated CCA 3′�end of tRNA from the PTC, cou�

pled with rotation of A2602 from its GGQ�coordinating

position (Fig. 1i). The GGQ�bearing motif of RF2 was

rearranged into a long β�hairpin that extends into the

peptide tunnel, as if to plug the PTC (Fig. 1i). This sug�

gests that the tip of the catalytic domain can rearrange to

bias diffusion of the newly formed protein toward the

exterior end of the tunnel, facilitating release of the pro�

tein from the ribosome.

Intersubunit rotation after peptide release is coupled
with RF dissociation. During translation, the ribosome

undergoes a series of intersubunit rearrangements. In the

elongation stage, tRNAs and mRNA translocate within

the ribosome as the small subunit spontaneously rotates

by ∼10° and binds the GTPase translocase EF�G in bac�

teria or eEF2 in eukaryotes (reviewed in refs [33, 62�66]).
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By contrast, large�scale ribosome rearrangements were

not thought to be part of the termination mechanism.

Indeed, FRET studies and X�ray crystallography have

shown that release factors bind and stabilize the non�

rotated ribosome [35�37, 67] in both the pre�reaction�

like [68] and post�reaction states [17�20]. Recent bio�

physical observations, however, suggested that interaction

of the release factors with the ribosome involves large�

scale ribosome dynamics [35]. Subsequent cryo�EM

studies have visualized RF1 [58] and RF2 [61] bound to

the ribosome in different rotational states, distinct from

previously determined crystal structures. They have visu�

alized how ribosome rearrangements facilitate dissocia�

tion of the release factors from the ribosome.

Following peptidyl�tRNA hydrolysis, the ribosome

contains deacyl�tRNA in the P site and release factor in

the A site (Fig. 1c). Due to reduced affinity of the deacyl�

tRNA to the 50S P site (relative to that of peptidyl�

tRNA), and increased affinity to the 50S E site, the tRNA

can sample the hybrid P/E state, in which the acceptor

arm is shifted on the large subunit. Solution FRET and

cryo�EM studies have shown that the deacyl�tRNA can

spontaneously fluctuate on the elongating ribosome

between the classical P/P state and the hybrid P/E states,

Fig. 2. Ribosome rescue and release mechanisms involving bacterial factors ArfA and ArfB, and mitochondrial factors mtRF1a, ICT1 and

mtRF�R. a and b) Cryo�EM structures of E. coli ribosomes with truncated mRNA, ArfA and compact (a) or extended (b) RF2 [49].

c) A close�up view of interactions between ArfA, RF2, mRNA and P�site tRNA. d�g) Cryo�EM structures of E. coli ribosomes with truncat�

ed mRNA (with a 0� or 9�nt�long overhang after the P site codon) and ArfB [110, 111]. h) Cryo�EM structure of porcine mitochondrial 55S

termination complex with mtRF1a bound to the stop codon [87] closely resembles bacterial termination complexes with RF1. i) Cryo�EM

structure of mitochondrial 55S rescue complex with ICT1 [87] closely resembles bacterial 70S complex with ArfB [compare to panel (e)].

j) Cryo�EM structure of large mitochondrial subunit bound with human rescue factor mtRF�R and auxiliary factor MTRES1 [98].
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coinciding with the non�rotated and rotated ribosome

conformations, respectively [37, 69�74]. Similar fluctua�

tions can occur in the presence of release factors [58, 61].

Gradual rotation of the small subunit is coupled with the

movement of the catalytic domain of release factor from

the PTC, while the codon�recognition domain remains

attached to the decoding center [61]. Upon an ∼7° rota�

tion of the small subunit, an equilibrium of structures

with and without RF2 is observed, suggesting that RF2

dissociates primarily from a rotated ribosome conforma�

tion (Fig. 1, d and f). Similarly, RF1 dissociates in the

presence of GTPase RF3 (Fig. 1e), which stabilizes the

rotated ribosome conformation [58, 75�78]. It is note�

worthy that RF3 is not conserved in bacteria [79] and is

dispensable for the growth of Escherichia coli [80, 81].

This indicates that RF1 can perform termination and dis�

sociate without RF3, and that dissociation of both RF1

and RF2 is driven by ribosome rearrangements.

Destabilization of the release factor on the small subunit

is coupled with disassembly of the central intersubunit

bridge formed by the 23S helix 69 (H69) and the decod�

ing center (Fig. 1h). In the rotated ribosome without

RF2, H69 is detached from the decoding center and

docked at the 50S subunit near A2602, suggesting that the

ribosome restructuring coincides with local PTC

rearrangements after peptide release [61]. In this posi�

tion, H69 would clash with RF2, in keeping with the

post�RF2�dissociation state. With H69 detached from the

small subunit, the ribosome is a substrate for binding of

the ribosome recycling factor RRF [82, 83], which splits

the ribosome into subunits with the aid of EF�G.

Mitochondria encode two RF�like proteins, mtRF1a

and mtRF1, but only mtRF1a has been shown to catalyze

translation termination (reviewed in ref. [84]). Very simi�

lar to bacterial RF1, human mtRF1a (HMRF1L) features

a P206KT208 motif and catalyzes peptide release on the

UAA and UAG stop codons ([85, 86] (human residue

numbering is used for eukaryotic proteins unless noted

otherwise). The recent cryo�EM work has visualized the

porcine mitochondrial termination complex with

mtRF1a (Fig. 2h; [87]). Interactions of the codon�recog�

nition domain, switch loop, and domain 3 with the ribo�

some demonstrate that the structural mechanisms of

codon recognition and termination by mtRF1a are simi�

lar to those of RF1. Although dissociation of mtRF1a

remains to be visualized, conservation of intersubunit

rearrangements in mitoribosomes [88, 89] suggests that

mtRF1a dissociation in the absence of a mitochondrial

RF3 ortholog may be similar to that of RF2.

By contrast, the function of mtRF1 remains unclear

[84]. This bioinformatically identified ∼445�aa homolog

of RF1 [90] features a ∼70�aa N�terminal extension of

domain 1, which may affect ribosome binding.

Furthermore, the codon�recognition superdomain is sub�

stantially diverged from that of RF1, and carries

P264EVGLS269 and other extensions that appear incom�

patible with mRNA codons in the A site [91, 92]. mtRF1

was hypothesized to recognize the arginine codons AGA

and AGG, which were thought to be reassigned as termi�

nation codons in mitochondria [93]. However, no binding

or catalytic activity of mtRF1 could be detected on ribo�

somes programmed with mRNAs with stop or arginine

codons, and the protein fails to compensate for the dele�

tion of the functional release factor homolog in yeast [85�

87]. Subsequent work showed that termination at the

arginine codons in human mitochondria occurs due to

the absence of tRNAs that could decode these codons,

leading to –1 frameshifting that positions the UAG codon

in the A site for canonical termination by mtRF1a [94].

Because mtRF1 carries the conserved catalytic domain

with the GGQ motif, mtRF1 may participate in a quali�

ty�control mechanism that recognizes a specific confor�

mation of the ribosomal A site [92] and/or requires addi�

tional factors that remain to be identified.

RESCUE OF STALLED RIBOSOMES

BY TERMINATION�LIKE MECHANISMS

IN BACTERIA AND MITOCHONDRIA

Ribosomes stall on mRNAs that are truncated, do

not contain a stop codon, or that pause ribosomes by

other mechanisms [95]. Recent studies identified ribo�

some rescue systems that release peptides from stalled

ribosomes. In bacteria, alternative rescue factors A (ArfA)

and B (ArfB) represent independent molecular mecha�

nisms that complement the trans�translation rescue sys�

tem [95�97]. Recent structural studies have visualized the

structural mechanisms of these rescue factors. In mito�

chondria, two ribosome rescue systems involve RF�like

proteins that have recently been visualized by cryo�EM:

ICT1, which resembles bacterial ArfB and acts on mitori�

bosomes bearing truncated mRNA [87], and mtRF�R

(encoded by c12orf65), which cooperates with MTRES1

(encoded by c6orf203) to recognize large mitochondrial

subunits with stalled peptidyl�tRNA [98].

Bacterial alternative rescue factor A (ArfA). ArfA

(previously termed YhdL) is a small ∼70�aa protein that

recruits RF2 to release peptides from the ribosomes

stalled on truncated mRNAs without a stop codon

(Fig. 2, a�c; [99�101]). Five cryo�EM studies demon�

strated that the positively charged C�terminal tail of ArfA

binds the mRNA tunnel formed predominantly by the

16S ribosomal RNA, thus “sensing” the ribosomes whose

tunnel is vacant due to mRNA truncation [49, 50, 102�

104]. The N�terminal part folds into a compact domain

near the decoding center and interacts with the codon�

recognition domain of RF2, although the conserved SPF

motif of RF2 is not required for this interaction (Fig. 2c).

In all these studies, ArfA was captured with RF2 in an

extended, catalytically competent conformation resem�

bling those of release factors on stop codons (Fig. 2b). In
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this conformation, the switch loop of RF2 is stabilized by

hydrophobic interactions of Trp319 with ArfA. In addi�

tion, two studies captured compact RF2 (Fig. 2a), whose

codon�recognition domain is ∼5 Å farther from the A site

[49, 50]. Although interactions of RF2 with ArfA differ

from those with a stop codon, the structures highlight a

similar mechanism of release�factor activation by

enabling RF2 opening upon recognition of the specific

signal in the decoding center. The list of ArfA�like rescue

factors continues to grow, revealing genus�specific pecu�

liarities of the quality control mechanisms (reviewed in

ref. [105]). For example, while BrfA in B. subtilis depends

on RF2 and is similar to ArfA [106], ArfT in F. tularensis

can recruit either RF1 or RF2 to release peptides from

stalled ribosomes [107, 108].

Bacterial alternative rescue factor B (ArfB). ArfB

(previously termed YaeJ) is a ∼140�aa release factor that

contains both the mRNA�tunnel�binding C�terminal tail

and an RF�like catalytic domain carrying the GGQ motif

(Fig. 2, d�g). Biochemical studies suggested that ArfB

could rescue not only the ribosomes with mRNA truncat�

ed immediately after the P�site codon, but also ribosomes

with longer mRNA extensions [109], although the cat�

alytic activity of ArfB decreases with the increasing length

of mRNA and might depend on the sequence of mRNA

overhang [110, 111]. A crystallographic structure revealed

that the positively charged tail of ArfB forms an α�helix in

the vacant mRNA tunnel, while the catalytic N�terminal

domain docks into the PTC similarly to that of canonical

release factors [112]. Binding of ArfB to the non�rotated

ribosome resembles that of release factors, in keeping

with recognition of the substrate with stalled peptidyl�

tRNA. Since the mRNA tunnel cannot be occupied

simultaneously by ArfB and a longer mRNA overhang,

cryo�EM studies have recently visualized 70S ribosome

structures with ArfB and mRNA extending 2 or 9

nucleotides beyond the P site [110, 111]. The decoding

center nucleotides A1492 and A1493 interact with ArfB

and mRNA, allowing accommodation of different

mRNA overhangs via different conformations [111].

These findings highlight the structural plasticity of the

ribosomal decoding center and suggest that other rescue

pathways, such as ArfA in bacteria and Dom34 in eukary�

otes (discussed below) may detect ribosomes with a

broader range of mRNA overhangs and/or sequences.

In complexes with mRNA extending beyond the P

site codon, the α�helical tail of ArfB binds in the mRNA

tunnel, whereas the +9 mRNA overhang is excluded from

the tunnel and is either disordered in the intersubunit

space [110] or stabilized by a second copy of ArfB

(Fig. 2, e and f) [111]. These observations indicate that

ArfB may sense stalled ribosomes via different pathways,

depending on the mRNA sequence or structural dynam�

ics allowing mRNA excursions outside the mRNA tun�

nel. Furthermore, cryo�EM data classification revealed

an ensemble of structures with the catalytic N�terminal

domain of ArfB inside and outside of the PTC

(Fig. 2, d and e) [111]. These dynamics are consistent

with biochemical observations and suggest that the sub�

strate�recognition mechanism is reminiscent of that for

canonical release factors, which first recognize the

decoding center on the small subunit then rearrange to

dock the catalytic domain next to the scissile peptidyl�

tRNA bond.

The cryo�EM analyses have also identified ArfB on

the ribosomes with different degrees of intersubunit rota�

tion coupled with formation of the P/E hybrid state by

deacylated tRNA (Fig. 2, f�g). The occupancy of dimeric

ArfB decreases with the increasing rotation of the 30S

subunit, and the highly rotated ribosomes exhibit an equi�

librium between particles with monomeric ArfB�bound

and vacant A�site (Fig. 2g) [111]. Helix 69 of the vacant

ribosomes is dissociated from the decoding center and

would likely interfere with ArfB binding to the large sub�

unit. These findings suggest that ArfB, similarly to the

canonical release factors, dissociates upon spontaneous

intersubunit rotation and disruption of the H69�DC

bridge. Although the components of the parallel rescue

pathway – involving ArfA and RF2 – have only been

visualized on a non�rotated ribosome, the conserved

ribosomal dynamics of RF�bound and ArfB�bound com�

plexes suggest that a similar mechanism may be employed

to release ArfA and RF2 and prepare the ribosome for

recycling.

Mitochondrial rescue factor ICT1 (∼200 aa), a close

homolog of bacterial ArfB, catalyzes peptide release from

stalled ribosomes [113]. ICT1 (“immature colon carcino�

ma transcript�1”, also termed MRPL58) is essential for

cell growth [113�115], and its dysregulation is associated

with tumorigenesis [116]. Curiously, one molecule of

ICT1 binds to the central protuberance of the mitochon�

drial ribosome [117], but this position is distant from the

A site, indicating that this molecule does not catalyze

ribosome rescue (Fig. 2i). The central protuberance of the

large subunit interacts with the small subunit and with

tRNAs, rendering the structure of the central protuber�

ance critical for the proper ribosome assembly and func�

tion throughout kingdoms of life [118�122]. Although the

architectural function of ICT1 may partially contribute to

mitochondrial translation regulation, it is the catalytic

function of a different – transiently bound – ICT1 mole�

cule that is essential for mitochondrial translation. The

significance of the catalytic function was demonstrated by

mutational studies showing abrogation of cell growth

upon perturbation of the ICT1 GGQ motif [113].

In the recent cryo�EM structure of the ICT1�bound

rescue complex [87], the positively charged C�terminal

helix of ICT1 is found in the mRNA tunnel (Fig. 2i). The

catalytic N�terminal domain docks at the PTC similarly

to that of ArfB. Position of the GGQ motif supports the

catalytic role of the glutamine backbone, similar to that in

the release factors. The cryo�EM study was performed



TERMINATION AND RIBOSOME RESCUE 1113

BIOCHEMISTRY  (Moscow)   Vol.  86   No.  9   2021

using an mRNA truncated at the P site. It remains to be

visualized if/how ICT1 recognizes ribosomes with longer

mRNA overhangs [123], and whether the propensity of

isolated ICT1 to dimerize [124] reflects a mechanistic

scenario similar to that of dimeric ArfB, which can stabi�

lize long mRNA overhangs [111].

Mitochondrial release factor mtRF�R (∼170 aa) is a

mitochondrial peptidyl�tRNA hydrolase that is essential

for cell viability [125]. Mutations or dysregulation of this

protein perturb mitochondrial translation and are associ�

ated with disease [126�128]. A recent cryo�EM study

visualized human mtRF�R with peptidyl�tRNA on the

large mitochondrial ribosomal subunit [98]. Binding of

mtRF�R in the A site is aided by MTRES1 docked at the

tRNA anticodon stem (Fig. 2j). As expected, the catalyt�

ic domain of mtRF�R docks into the PTC and presents

the GGQ motif near the terminal nucleotide of the P�

tRNA. Surprisingly, peptidyl�tRNA is intact, likely due to

a unique conformation of the terminal lysine of the nas�

cent peptide, which has been shown to be a signature of

stalled ribosomes [129, 130]. Although mtRF�R with

MTRES1 can hydrolyze peptidyl�tRNAs on model

E. coli 50S complexes in vitro [98], it remains to be shown

whether and how mtRF�R rescues mitochondrial sub�

units stalled with lysyl�tRNA. Dissociation of mtRF�R

and MTRES1 from the large subunit, required for ribo�

some recycling, is likely coupled with dissociation of dea�

cyl�tRNA after peptidyl�tRNA hydrolysis. Yet it is possi�

ble that additional factors assist in disassembly of this res�

cue complex. Future studies will determine substrate

specificity of mtRF�R and the mechanism of mtRF�

R/MTRES1 dissociation.

CYTOPLASMIC TERMINATION AND RIBOSOME

RESCUE IN EUKARYOTES

Translation termination by eRF1•eRF3. Eukaryotic

eRF1 (∼440 aa) is structurally diverged from bacterial

release factors, and its catalytic function depends on the

GTPase activity of eRF3 [23, 131�133]. The codon�

recognition domain of eRF1 (N domain) is folded differ�

ently from that of bacterial release factors, and carries

conserved stretches of amino acids, such as the

T58ASNIKS64 motif, that is essential for recognition of all

three stop codons [134�136]. Furthermore, unlike bacte�

rial release factors, eRF1 recognizes a tetranucleotide

including the three nucleotides of a stop codon and a

downstream nucleotide [137�139]. Ribosome�profiling

and other studies have shown that the stop codons fol�

lowed by a pyrimidine result in abundant readthrough of

the annotated stop codons [140], in keeping with lower

catalytic activity of eRF1 on tetranucleotides with a ter�

minal pyrimidine [138]. This dependence contributes to

reassignment of stop codons to sense codons in ciliates,

although the “fourth” nucleotide is not the exclusive

determinant of the reassignment [141�143]. Additional

features of mRNA, such as sequence and structure

around and downstream of the stop codon, play a role in

the efficiency of eukaryotic termination [144�147].

Despite differences between eukaryotic and bacterial

release factors, eukaryotic termination resembles that of

its bacterial counterpart in that the accuracy is controlled

by a large�scale conformational change in eRF1. Cryo�

EM studies captured eRF1 on the ribosome in three func�

tional states (Fig. 3, a�c): with eRF3 (with compact eRF1

inactive for peptide release) [148�150], without eRF3

(with extended eRF1 activated for peptide release)

[139, 151] and with ATP�binding cassette protein ABCE1

(Rli1 in yeast; [137, 148, 152]), a recycling factor that dis�

assembles ribosomes into subunits [153�155]. These

structures, combined with biochemical and biophysical

data, allow reconstruction of most steps of eukaryotic ter�

mination. Upon binding of eRF1•eRF3•GTP to the

ribosome with a stop codon in the A site [156] (Fig. 3a),

GTP hydrolysis releases eRF3 and leads to the insertion

of the catalytic M domain of eRF1 with the GGQ motif

into the PTC (Fig. 3, b and d). GTP hydrolysis is cat�

alyzed by the sarcin�ricin loop of the large subunit, where

eRF3 binds similarly to other translational GTPases, such

as elongation factors EF�Tu and eEF1A. The codon�

recognition residues of eRF1 interact with all four

nucleotides of the mRNA termination signal, which

adopts a U�turn conformation (Fig. 3e) resulting in

mRNA compaction in the ribosomal tunnel [157].

Interestingly, despite structural and sequence divergence

from bacterial termination (Fig. 1c), eukaryotic and bac�

terial termination share similar aspects in stop�codon

recognition, such as recognition of the purine at

position 3 (R3) by the conserved Thr58 and Ile62 of the

TASNIKS motif of eRF1 (Fig. 3e; [137] and Thr198 and

Ile196 of E. coli RF1 [158]. Furthermore, the last purine

of the termination signal (R4 in eukaryotes or R3 in bac�

teria) stacks on the decoding center nucleotide G626

(G530 in E. coli) in keeping with the preference for

purine over pyrimidine at this position (Figs. 1h and 3e).

In the extended catalytic conformation, the C

domain of eRF1, which bridges the N and M domains,

can interact with the Fe�S domain of ABCE1 to initiate

ribosome recycling (Fig. 3c; [148, 152]). ABCE1, whose

conformational dynamics are controlled by two ATP�

binding sites [159] and which has affinity to both the 80S

ribosome and the 40S subunit [160�162], assists in split�

ting the post�termination ribosome via intermediate

eRF1�dissociation states that remain to be visualized.

Rescue of stalled ribosomes by Dom34•Hbs1 and
Vms1. Although no eukaryotic analogs of ArfA or ArfB

have been reported, several quality�control mechanisms

have been discovered that resemble the eukaryotic termi�

nation system [166]. Dom34 (Pelota in mammals) and

GTPase Hbs1 form a heterodimer, which rescues ribo�

somes stalled on truncated mRNAs, structured mRNAs,
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or the mRNA 3′�UTRs [167�170]. Dom34 and Hbs1 are

remarkably similar to eRF1 and eRF3, respectively

(Fig. 3, f and g). Dom34, however, lacks the catalytic

GGQ motif, and therefore does not hydrolyze peptidyl�

tRNA, but instead promotes subunit dissociation [170].

Cryo�EM structures showed that the binding of Dom34

and Hbs1 to the ribosome is similar to that of eRF1 and

eRF3 [148, 163, 171]. The GTPase domain of Hbs1 docks

at the sarcin ricin loop, whereas the long N�terminal tail

of Hbs1 reaches toward the mRNA entry tunnel (Fig. 3, f

and h), implicating a role in recognition of stalled mRNA

substrates [163, 171]. Dom34 β�hairpin reaches into the

decoding center, distantly resembling bacterial rescue fac�

tors that sample the vacant mRNA tunnel (Fig. 3h).

Comparison of tRNA�, eRF1�, and Dom34�bound ribo�

some structures revealed different conformations of the

decoding center [148], highlighting the plasticity of the

eukaryotic decoding center echoing that of bacterial ribo�

somes [111]. Moreover, Dom34 can be accommodated in

the presence of longer mRNAs, including the poly�A tail,

due to redirection of the mRNA overhang into intersub�

unit space [148]. This is reminiscent of bacterial rescue

complexes with ArfB [110, 111] and rationalizes how

Dom34 can recognize a range of substrates not limited to

mRNAs truncated after the P�site codon. Upon opening

of Dom34 (Fig. 3g), the M domain binds the stem of the

acceptor arm of tRNA to assist in displacement of tRNA

from the ribosome (Fig. 3i). Similarly to canonical termi�

nation, disassembly of Dom34�bound ribosomes involves

ABCE1 [172], which interacts with Dom34 after Hbs1

departure (Fig. 3g; [148, 164]). Future studies will provide

insights into the detailed mechanics of ribosome disas�

sembly following canonical termination and Dom34

binding, which likely include similar inter� and intra�sub�

unit rearrangements.

The peptidyl�tRNA bound to the large 60S subunit

as a result of ribosome quality control mechanisms, is

resolved by such mechanisms as addition of C�terminal

alanyl�threonyl repeats (CAT�tailing) to the peptide by

Rqc2 and its ubiquitination by Ltn1 (Listerin in mam�

mals: [173]), and cleavage of the peptidyl�tRNA. Vms1

(ANKZF1 in mammals) is a large ∼600�750 aa peptidyl�

tRNA hydrolase that dissociates 60S•peptidyl�tRNA

complexes [174, 175]. The sequence of its catalytic

Fig. 3. Eukaryotic translation termination and cytoplasmic ribosome rescue mechanisms. a�c) Rearrangements of release factor eRF1 on the

80S ribosome with a stop codon upon GTP hydrolysis on eRF3 (a�b) and interaction with recycling factor ABCE1 (c; Rli1 in yeast).

d) Interaction of the catalytic conformation of eRF1 with the P�site tRNA [137]. e) Recognition of the 4�nucleotide stop signal by eRF1

involves residues of the TASNIKS motif (Ile62 and Lys63 are shown) and G626 of 18S rRNA [137]. f and g) Rearrangements of Pelota

(Dom34 in yeast) on the 80S ribosome with truncated mRNA upon GTP hydrolysis on Hbs1 [163] and binding of ABCE1 [164].

h) Recognition of truncated mRNA by Dom34 [163]. i) Interaction of the extended conformation of Dom34 with the P�site tRNA [164].

j) 60S rescue complex with peptidyl�tRNA hydrolase Vms1 and Arb1 [165]. k) Interaction of Vms1 and Arb1 with the tRNA.
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domain resembles that of eRF1 and features a GXQ

(X=Ser294 in S. cerevisiae) motif with a functionally

important glutamine [165, 174, 175]. Despite this resem�

blance and some similarity to mitochondrial mtRF�R

[98], Vms1 does not hydrolyze the ester bond of the pep�

tidyl�tRNA. Instead, Vms1 cleaves the phosphodiester

bond between nucleotides 73 and 74 of tRNA, separating

CCA�peptide from the rest of tRNA [176, 177]. The

tRNA fragment gets repaired by ELAC1 and the CCA�

adding enzyme TRNT1 [176, 178]. Cryo�EM visualized

Vms1 bound to the 60S subunit with an ABCF�type

ATPase Arb1 next to tRNA (Fig. 3j) [165]. Arb1 likely

contributes to the positioning of peptidyl�tRNA sub�

strate, thus enhancing the reaction efficiency [165]. The

catalytic domain of Vms1 is placed next to the tRNA

(Fig. 3k) similarly to the M domain of Dom34 (Fig. 3i).

The GSQ loop is disordered in the vicinity of the tRNA

CCA end. The conserved neighboring Tyr285 stacks on

the tRNA nucleotide 72, displacing nucleotide 73 and

exposing the scissile phosphodiester bond for hydrolysis

(Fig. 3k). Vms1 spans over a large area on the intersubunit

interface of the 60S subunit, in keeping with the role of

Vms1 in coordinating peptidyl�tRNA hydrolysis with

degradation of the aberrant peptide. The ankyrin�repeat

and coiled�coil domains are directed toward the peptide

exit tunnel, where the VIM domain likely contributes to

Cdc48�mediated extraction and clearance of the peptide

by proteasome [179�181]. Future studies will provide

details on how Vms1 cooperates with other proteins to

dissociate the CCA�peptide and tRNA fragment from the

60S subunit, allowing to recycle the latter for translation

of a new mRNA.

CONCLUSIONS

Recent studies uncovered many details of the termi�

nation and ribosome rescue mechanisms throughout the

kingdoms of life. They demonstrate the diversity of pep�

tide release scenarios catalyzed by proteins with different

architectures. Some aspects of these scenarios remain to

be visualized, but it is clear that the recognition and reso�

lution of termination and stalled ribosome complexes

strongly depends on the ribosome conformations and

rearrangements, rendering the ribosome an active partic�

ipant in all translation and quality control steps.
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