Preparation and injection protocol for crRNA with LbCpf1

			Guide sequence
	tail sequence 5'=>3'	5' PAM	length
AsCpf1	GG UAAUUUCUACUCUUGUAGAU	TTTN	23nt
LbCpf1	GG UAAUUUCUACUAAGUGUAGAU	TTTV (V= G, C or A)	23nt
FnCpf1	GG UAAUUUCUACUGUUGUAGAU	TTN	23nt

Make DNA template for "dr"-crRNA (see Liu et al., NAR 2020)

for target design we use Lb crRNA СНОРСНОР (http://chopchop.cbu.uib.no) - we no longer use the "GC swap", as described in Liu et al. across multiple targets we have found the extended "dr"-crRNA Guide sequence (23 nt) works best UNNNNNNNNNNNNNNNNNNNNNNNNN -3' 5'-AAUUU example below is for LbCas12a, just swap backbone sequences above as needed if you want to use As or FnCas12a, both of which work in zebrafish. Example (LbCas12a): PAM + Target sequence (albino locus): 5'-TTTN GAAGGGAATTCTGCTACGCTGTT-3' Your target (23mer) 15mer overlap #9129 T7 scaffold-LbcrRNA-Top (56mer) **CTAATACGACTCACTATAGG**GTTTCAAAGATTAAATAATTTCTACTAAGTGTAGATGAAGGGAATTCTGCTACGCTGTT

T7 promoter+full-length_DR+Albino_crRNA

Your designing primer (38mer)

Top oligo: #9129 T7_scaffold-LbcrRNA-Top (common to all targets): 5'-CTAATACGACTCACTATAGG GTTTCAAAGATTAAATAATTT**CTACTAAGTGTAGAT**-3' (Primer for making Lb_drcrRNA. Bold letters indicate overlapped to reverse complement primer)

<u>Bottom oligo:</u> *albino*_LbCpf1_drcrRNA Bottom: 5 ' -AACAGCGTAGCAGAATTCCCTTC **ATCTACACTTAGTAG**-3 '

PCR for DNA template

3 μL 200μM top oligo	Cycling:
3 µL 200µM bottom oligo	1. 98°C 15 sec
1.2 µL 10mM dNTPs	2. 98°C 10 sec
12 µL 5x Phusion Buffer	3. 60°C 15 sec
40.2 μL H ₂ O	4. 72°C 5 sec
0.6 µL Phusion HF (M0530, NEB)	5. 40 cycles (2.3.4.)
60 µL	6. 72°C 60 sec

- run 3 μL on 3% TBE gel (Ultra-pure Agarose 1000, ThermoFisher: 16550100)

Column purify using a Zymogen Gel purification kit (Zymo Research, D4007) 57 μ L PCR reaction + 200 μ L Dissolving buffer, spin at max, 1 minute Aspirate and add 200 μ L wash buffer, spin at max 1 minute, repeat 1x Spin at max to remove residual wash and aspirate. Elute with 12 μ L nuclease free dH₂O into RNAse-free tube. Quantify by NanoDrop (concentration usually around 100~150ng/ μ L)

crRNA synthesis

use 250~375 ng of DNA template

follow instruction from T7 MEGAscript kit (ThermoFisher, AM1333) with some modifications:

- 1. Perform half reactions (10 μl)
- 2. Incubate at 37°C >5hr, overnight is strongly recommended
- 3. Perform DNaseTURBO (1 µl) incubation for 40 min
- 4. Clean up with phenol:chloroform and isopropanol precipitation as described in MEGAscript kit
- 5. final pellet must be dried completely at RT after 80% EtOH wash
- 6. make sure pellet is completely suspended in water by pipetting up and down 20 times
- resuspend pellet in 20 µL nuclease free dH₂O
- determine concentration by Nanodrop (usually between 1000 and 2000 ng/µL)

Injection

We routinely test activity through injection followed by PCR and enzyme digestion, or TIDE analysis (<u>https://tide.deskgen.com</u>) or ICE analysis (https://ice.synthego.com).

Cas12a MUST be injected as a ribonucleoprotein complex (RNP) to be active in zebrafish.

Prepare ribonucleoprotein complex

1893ng of drcrRNA 1 μ L LbCpf1 (diluted to 33 μ M) (M0653T, NEB, or home-made) 0.5 μ L 0.05% Phenol Red X μ L H₂O to 5 μ L 5 μ L injection solution

- incubate at RT for 20min before injection
- 2nL injection gives you 13 fmoles of LbCpf1/crRNA complex (RNP) per embryo
- CRISPR injections are pretty tolerant of variable injection location in the embryo. However, if you are co-injecting with a DNA template for germline transmission we recommend injecting directly into the cell as early as possible.
- IMPORTANT: Incubate injected embryos at 34°C for 4hrs immediately following injection, then return to 28°C.
- **IMPORTANT:** if you are co-injecting Cas12a with a DNA template, make sure to add the DNA template last and do NOT spin after adding the DNA.