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Abstract It is increasingly appreciated that intracellular pH changes are important biological 
signals. This motivates the elucidation of molecular mechanisms of pH sensing. We determined that 
a nucleocytoplasmic pH oscillation was required for the transcriptional response to carbon starva-
tion in Saccharomyces cerevisiae. The SWI/SNF chromatin remodeling complex is a key mediator 
of this transcriptional response. A glutamine- rich low- complexity domain (QLC) in the SNF5 subunit 
of this complex, and histidines within this sequence, was required for efficient transcriptional repro-
gramming. Furthermore, the SNF5 QLC mediated pH- dependent recruitment of SWI/SNF to an 
acidic transcription factor in a reconstituted nucleosome remodeling assay. Simulations showed 
that protonation of histidines within the SNF5 QLC leads to conformational expansion, providing a 
potential biophysical mechanism for regulation of these interactions. Together, our results indicate 
that pH changes are a second messenger for transcriptional reprogramming during carbon starva-
tion and that the SNF5 QLC acts as a pH sensor.

Editor's evaluation
This study has considerable merit in providing evidence that the Q- rich low- complexity domain in 
Snf5, and the histidine residues located therein, functions as a sensor of the drop in intracellular pH 
that accompanies glucose starvation to mediate SWI/SNF recruitment and transcriptional activation 
of the battery of genes derepressed under these conditions in order to reprogram carbon utiliza-
tion. The work is multifaceted in combining yeast genetics, single- cell assays of gene expression 
and intracellular pH, genome- wide analysis of gene expression changes by RNA- seq, and in vitro 
biophysical analysis of activator- dependent SWI/SNF recruitment and nucleosome remodeling in a 
purified system.

Introduction
Biological processes are inherently sensitive to the solution environment in which they occur. A key 
regulated parameter is intracellular pH (pHi), which influences all biological processes by determining 
the protonation state of titratable chemical groups. These titratable groups are found across many 

RESEARCH ARTICLE

*For correspondence: 
Liam.Holt@nyulangone.org

Present address: †Weill Cornell 
Medicine, New York, United 
States

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 26

Preprinted: 03 March 2021
Received: 19 May 2021
Accepted: 06 February 2022
Published: 07 February 2022

Reviewing Editor: Alan G 
Hinnebusch, Eunice Kennedy 
Shriver National Institute of Child 
Health and Human Development, 
United States

   Copyright Gutierrez et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.70344
mailto:Liam.Holt@nyulangone.org
https://doi.org/10.1101/2021.03.03.433592
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article      Biochemistry and Chemical Biology | Chromosomes and Gene Expression

Gutierrez et al. eLife 2022;11:e70344. DOI: https://doi.org/10.7554/eLife.70344  2 of 32

biological molecules, from small- molecule osmolytes to the side chains of amino acids. While early 
work suggested that pHi was a tightly constrained cellular parameter, more recent technologies have 
revealed that pHi can vary substantially in both space and time (Llopis et  al., 1998; Seksek and 
Bolard, 1996). Moreover, changes in pHi can regulate metabolism (Busa and Nuccitelli, 1984; Young 
et al., 2010), development (Needham and Needham, 1997), proliferation (Busa and Crowe, 1983), 
and cell fate (Okamoto, 1994), among other processes. Intriguingly, stress- associated intracellular 
acidification appears to be broadly conserved, suggesting that a drop in pHi is a primordial mecha-
nism to coordinate the general cellular stress response (Drummond et al., 1986; Gores et al., 1989; 
Munder et al., 2016; O’Sullivan and Condon, 1997; Triandafillou et al., 2020; Yao and Haddad, 
2004).

The budding yeast Saccharomyces cerevisiae is adapted to an acidic external environment (pHe), 
and optimal growth media is typically at pH 4.0–5.5. The plasma membrane (Pma1) and vacuolar 
(Vma1) ATPases maintain near neutral pHi of ~7.8 by pumping protons out of the cell and into the 
vacuole, respectively (Martínez- Muñoz and Kane, 2008). When cells are starved for carbon, these 
pumps are inactivated, leading to a rapid acidification of the intracellular space to pH ~6 (Kane, 1995; 
Orij et al., 2009). This decrease in intracellular pHi is crucial for viability upon carbon starvation and 
is thought to conserve energy, leading to storage of metabolic enzymes in filamentous assemblies 
(Petrovska et al., 2014), reduction of macromolecular diffusion (Joyner et al., 2016; Munder et al., 
2016), decreased membrane biogenesis (Young et al., 2010), and possibly the noncovalent cross-
linking of the cytoplasm into a solid- like material state (Joyner et al., 2016; Munder et al., 2016). 
These studies suggest that many physiological processes are inactivated when pHi drops. However, 
some processes must also be upregulated during carbon starvation to enable adaptation to this stress. 
These genes are referred to as ‘glucose- repressed genes’ as they are transcriptionally repressed in the 
presence of glucose (DeRisi et al., 1997; Zid and O’Shea, 2014). Recently, evidence was presented 
of a positive role for acidic pHi in stress- gene induction: transient acidification is required for induction 
of the transcriptional heat- shock response in some conditions (Triandafillou et al., 2020). However, 
the molecular mechanisms by which the transcriptional machinery senses and responds to pH changes 
remain mysterious.

The Sucrose Non- Fermenting genes (SNF) were among the first genes found to be required 
for induction of glucose- repressed genes (Neigeborn and Carlson, 1984). Several of these genes 
were later identified as members of the SWI/SNF complex (Abrams et al., 1986; Carlson, 1987), an 
11- subunit chromatin remodeling complex that is highly conserved from yeast to mammals (Chiba 
et al., 1994; Peterson et al., 1994; Peterson and Herskowitz, 1992). The SWI/SNF complex affects 
the expression of ~10% of the genes in S. cerevisiae during vegetative growth (Sudarsanam et al., 
2000). Upon carbon starvation, most genes are downregulated, but a set of glucose- repressed genes, 
required for utilization of alternative energy sources, are strongly induced (Zid and O’Shea, 2014). 
The SWI/SNF complex is required for the efficient expression of several hundred stress- response and 
glucose- repressed genes, implying a possible function in pH- associated gene expression (Biddick 
et al., 2008a; Sudarsanam et al., 2000). However, we still lack evidence for a direct role for SWI/SNF 
components in the coordination of pH- dependent transcriptional programs or a mechanism through 
which pH sensing may be achieved.

10/11 subunits of the SWI/SNF complex contain large intrinsically disordered regions (Figure 1—
figure supplement 1), and in particular, 4/11 SWI/SNF subunits contain glutamine- rich low- complexity 
sequences (QLCs). QLCs are present in glutamine- rich transactivation domains (Kadonaga et al., 1988; 
Kadonaga et al., 1987) some of which, including those found within SWI/SNF, may bind to transcrip-
tion factors (Prochasson et al., 2003) or recruit transcriptional machinery (Geng et al., 2001; Janody 
et  al., 2001; Laurent et  al., 1990). Intrinsically disordered regions lack a fixed three- dimensional 
structure and can be highly responsive to their solution environment (Holehouse and Sukenik, 2020; 
Moses et al., 2020). Moreover, the SWI/SNF QLCs contain multiple histidine residues. Given that 
the intrinsic pKa of the histidine sidechain is 6.9 (Whitten et al., 2005), we hypothesized that these 
glutamine- rich low- complexity regions might function as pH sensors in response to variations in pHi.

In this study, we elucidate SNF5 as a pH- sensing regulatory subunit of SWI/SNF. SNF5 is over 50% 
disordered and contains the largest QLC of the SWI/SNF complex. This region is 42% glutamine and 
contains seven histidine residues. We investigated the relationship between the SNF5 QLC and the 
cytosolic acidification that occurs during acute carbon starvation. By single- cell analysis, we found that 

https://doi.org/10.7554/eLife.70344


 Research article      Biochemistry and Chemical Biology | Chromosomes and Gene Expression

Gutierrez et al. eLife 2022;11:e70344. DOI: https://doi.org/10.7554/eLife.70344  3 of 32

intracellular pH (pHi) is highly dynamic and varies between subpopulations of cells within the same 
culture. After an initial decrease to pHi ~ 6.5, a subset of cells recovered their pHi to ~7. This transient 
acidification followed by recovery was required for expression of glucose- repressed genes. The SNF5 
QLC and four embedded histidines were required for rapid gene induction. SWI/SNF complex histone 
remodeling activity was robust to pH changes, but recruitment of the complex to a model transcrip-
tion factor was pH- sensitive, and this recruitment was mediated by the SNF5 QLC and histidines 
within. All- atom simulations indicated that histidine protonation causes a conformational expansion 
of the SNF5 QLC, perhaps enabling interaction with a different set of transcription factors and driving 
recruitment to the promoters of glucose- repressed genes. Thus, we propose changes in histidine 
charge within QLCs as a mechanism to sense pH changes and instruct transcriptional reprograming 
during carbon starvation.

Results
Induction of ADH2 upon glucose starvation requires the SNF5 
glutamine-rich low-complexity sequence with native histidines
The SWI/SNF chromatin remodeling complex subunit SNF5 has a large low- complexity region at 
its N- terminus that is enriched for glutamine, the sequence of which is shown in Figure  1A. This 
sequence contains seven histidine residues, and we noticed a frequent co- occurrence of histidines 
within and adjacent to glutamine- rich low- complexity sequences (QLCs) of many proteins. Inspection 
of the sequence properties of proteins, especially through the lens of evolution, can provide hints as 
to functionally important features. Therefore, we analyzed the sequence properties of all glutamine- 
rich low- complexity sequences (QLCs) in the proteomes of several species.

We defined QLCs as protein subsequences with a minimum of 25% glutamine residues, a maximum 
interruption between any two glutamine residues of 17 residues, and a minimum overall length of 
15 residues. These parameters were optimized empirically based on the features of glutamine- rich 
regions in the S. cerevisiae proteme (see Materials and methods and Figure 1—figure supplement 
2). By these criteria, the S288c S. cerevisiae strain had 144 QLCs (Supplementary file 1). We found 
that proline and histidine were enriched (>50–100%-fold higher than average proteome abundance) 
in yeast QLCs (Figure 1B), with similar patterns found in Dictyostelium discoideum, and Drosophila 
melanogaster proteomes (Figure 1—figure supplement 3). Enrichment for histidine within QLCs was 
previously described across many Eukaryotes using a slightly different method (Ramazzotti et al., 
2012). Interestingly, the codons for glutamine are a single base pair mutation away from proline and 
histidine. However, they are similarly adjacent to lysine, arginine, glutamate, and leucine, yet QLCs 
are depleted for lysine, arginine, and glutamate, suggesting that the structure of the genetic code 
is insufficient to explain the observed patterns of amino acids within QLCs. We also considered the 
possibility that histidines might be generally enriched in low- complexity sequences. In fact, this is not 
the case: histidines are 50% more abundant in yeast QLCs than in all other low- complexity sequences 
identified using Wootton–Federhen complexity (see Materials and methods). Thus, histidines are a 
salient feature of QLCs.

The N- terminus of SNF5 contains one of the largest QLCs in the yeast proteome and is in the top 
3 QLCs in terms of number of histidines (Figure 1—figure supplement 2E and F). We compared the 
sequences of Snf5 N- terminal domains taken from 20 orthologous proteins from a range of Ascomy-
cota (a fungal phylum) (Figure 1—figure supplement 4, Supplementary file 2). Despite the relatively 
poor sequence conservation across the N- terminal disordered regions in SNF5 (Figure  1—figure 
supplement 4A), every region consisted of at least 18% glutamine (max 43%) and all possessed 
multiple histidine residues (Figure 1—figure supplement 4B, Supplementary file 2; the phylogeny 
considered and the total number of QLCs for each species are shown in Figure 1—figure supplement 
4C). A broader survey of the tree of life (Figure 1—figure supplement 5) indicates that the SNF5 
QLC was likely gained in the lineage leading to the Ascomycota and is not present in most Metazoa 
(animals). In summary, enrichment for glutamine residues interspersed with histidine residues appears 
to be a conserved sequence feature, both in QLCs, in general, and in the N- terminus of SNF5, in 
particular, implying a possible functional role (Zarin et al., 2019).

To further investigate the functional importance of the glutamine- rich N- terminal domain in SNF5, 
we engineered three SNF5 mutant strains: a complete deletion of the SNF5 gene (snf5Δ); a deletion 

https://doi.org/10.7554/eLife.70344


 Research article      Biochemistry and Chemical Biology | Chromosomes and Gene Expression

Gutierrez et al. eLife 2022;11:e70344. DOI: https://doi.org/10.7554/eLife.70344  4 of 32

Figure 1. Efficient induction of ADH2 upon glucose starvation requires the SNF5 glutamine- rich low- complexity 
sequence with native histidines. (A) Sequence of the N- terminal low- complexity domain of SNF5. This domain 
was deleted in the ΔQsnf5 strain. The glutamine- rich domain is highlighted in orange. The 4/7 histidines that 
were mutated to alanine in the HtoASNF5 allele are highlighted in red. (B) The log2 of the frequency of each amino 

Figure 1 continued on next page
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of the N- terminal QLC (ΔQsnf5); and an allele with four histidines within the QLC mutated to alanine 
(HtoAsnf5) (Figure 1A and C).

As previously reported (Laurent et al., 1990), snf5Δ strains grew slowly (Figure 1—figure supple-
ment 6A). In contrast, growth rates of ΔQsnf5 and HtoAsnf5 were similar to WT during continuous 
growth in either fermentable (glucose) or poor (galactose or galactose/ethanol) carbon sources 
(Figure 1—figure supplement 6A–D) and showed minimal defects when grown in glucose, carbon- 
starved for 24 hr, and then reinoculated into glucose media. However, a strong growth defect was 
revealed for ΔQsnf5 and HtoAsnf5 strains when cells were carbon- starved for 24 hr and then switched 
to a poor carbon source (Figure 1—figure supplement 6E and F), suggesting that the SNF5 QLC 
is important for adaptation to new carbon sources. Deletion of the SNF5 gene has been shown to 
disrupt the architecture of the SWI/SNF complex, leading to loss of other subunits (Peterson et al., 
1994; Yang et al., 2007). To test if deletion of the QLC leads to loss of Snf5p protein or failure to 
incorporate into SWI/SNF, we immunoprecipitated the SWI/SNF complex from strains with a tandem 
affinity purification (TAP) tag at the C- terminal of the core SNF2 subunit. We found that the entire SWI/
SNF complex remained intact in both the ΔQsnf5 and HtoAsnf5 strains (Figure 1—figure supplement 
7A). Silver stains of the untagged Snf5p and Western blotting of TAP- tagged SNF5 (Puig et al., 2001) 
strains showed that all SNF5 alleles were expressed at similar levels to wild- type both in glucose and 
upon carbon starvation (Figure 1—figure supplement 7B). Together, these results show that deletion 
of the SNF5 QLC is distinct from total loss of the SNF5 gene and that this N- terminal sequence is 
important for efficient recovery from carbon starvation.

We hypothesized that slow recovery of ΔQsnf5 and HtoAsnf5 strains after carbon starvation was due 
to a failure in transcriptional reprogramming. The alcohol dehydrogenase ADH2 gene is normally 
repressed in the presence of glucose and strongly induced upon carbon starvation. This regulation 
depends on SWI/SNF activity (Peterson and Herskowitz, 1992). Therefore, we used ADH2 as a 
model gene to test our hypothesis. We assayed SWI/SNF occupancy at the ADH2 promoter by chro-
matin immunoprecipitation (ChIP) of SWI/SNF complexes with a TAP- tag on the C- terminus of the 
SNF2 subunit from strains with various SNF5 alleles, followed by quantitative PCR (qPCR). These 

acid within QLCs divided by the global frequency of each amino acid in the proteome (S. cerevisiae). Values > 0 
indicate enrichment in QLCs. (C) Left: schematic of the SWI/SNF complex engaged with a nucleosome. The SNF5 
C- terminus is shown in gray, while the disordered N- terminal QLC is shown in orange. Right: schematic of the 
three main SNF5 alleles used in this study. (D) RT- qPCR results assessing levels of endogenous ADH2 mRNA in four 
strains grown in glucose (left) or after 4 hr of glucose starvation (right). Note: y- axes are different for each plot. (E) 
Representative histograms (10,000 cells) showing the fluorescent signal from a PADH2- mCherry reporter gene for four 
strains grown in glucose (left) or after 6 hr of glucose starvation (right). Statistical tests are Bonferroni- corrected 
t- tests, *p<0.05, **p<0.01, n.s., not significant.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. The SWI/SNF complex has 10/11 subunits with significant disorder.

Figure supplement 2. Identification and analysis of glutamine- rich low- complexity sequences (QLCs).

Figure supplement 3. Histidines are enriched in glutamine- rich low- complexity sequences.

Figure supplement 4. The SNF5 N- terminal glutamine- rich low- complexity domain (with embedded histidines) is 
broadly conserved across Ascomycota.

Figure supplement 5. The SNF5 N- terminal glutamine- rich low- complexity domain was probably gained in the 
fungal lineage.

Figure supplement 6. The SNF5 QLC is important for recovery from carbon starvation.

Figure supplement 7. Mutation of the SNF5 QLC does not lead to protein degradation or loss of SWI/SNF 
complex integrity.

Figure supplement 7—source data 1. The entire SWI/SNF complex copurifies with SNF2 in all strains and 
conditions.

Figure supplement 8. Efficient recruitment of the SWI/SNF complex to the ADH2 promoter depends upon pH, 
the SNF5 QLC and histidines within.

Figure supplement 9. The SNF5 QLC and embedded histidines are required for efficient ADH2 induction upon 
carbon starvation.

Figure 1 continued

https://doi.org/10.7554/eLife.70344
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experiments showed that the wild- type complex is robustly recruited to the ADH2 promoter upon 
carbon starvation (Figure 1—figure supplement 8). However, this recruitment is reduced in ΔQsnf5 
and HtoAsnf5 strains.

Next, we assayed transcription of the ADH2 gene using reverse transcriptase quantitative poly-
merase chain reaction (RT- qPCR). We found that robust ADH2 expression after acute carbon starvation 
was dependent on the SNF5 QLC and the histidines within (Figure 1D). This defect was far stronger 
in the ΔQsnf5 and HtoAsnf5 strains than in snf5Δ strains; snf5Δ strains did not completely repress ADH2 
expression in glucose and showed partial induction upon carbon starvation, while ΔQsnf5 strains 
tightly repressed ADH2 in glucose (similar to WT), but completely failed to induce expression upon 
starvation (Figure 1D). These results suggest a dual role for SNF5 in ADH2 regulation, both contrib-
uting to strong repression in glucose and robust induction upon carbon starvation. The ΔQsnf5 and 

HtoAsnf5 alleles separate these functions, maintaining WT- like repression while showing a strong defect 
in induction.

The RT- qPCR and ChIP assays report on the average behavior of a population. To enable single- 
cell analysis, we engineered a reporter strain with the mCherry (Shaner et  al., 2004) fluorescent 
protein under the control of the ADH2 promoter integrated into the genome immediately upstream 
of the endogenous ADH2 locus (Figure 1E, Figure 1—figure supplement 9A). We found high cell- 
to- cell variation in the expression of this reporter in WT strains: after 6 hr of glucose starvation, PADH2- 
mCherry expression was bimodal; about half of the cells had high mCherry fluorescence and half 
were low. This bimodality was strongly dependent on preculture conditions and was most apparent 
upon acute withdrawal of carbon from early log- phase cells that had grown for >16 hr with optical 
density at 600 nm (O.D.) never exceeding 0.3 (see Materials and methods). If cells became partly 
saturated at any time during preculture, ADH2 induction was more rapid and uniform. Complete 
deletion of SNF5 eliminated this bimodal expression pattern; again, low levels of expression were 
apparent in glucose and induction during starvation was attenuated. As in the RT- qPCR analysis, the 
ΔQsnf5 strain completely failed to induce the PADH2- mCherry reporter at this time point and muta-
tion of four central histidines to alanine was sufficient to mostly abrogate expression (Figure 1E). 
Mutation of a further two histidines had little additional effect (Figure 1—figure supplement 9B–D). 
Taken together, these results suggest that the dual function of SNF5 leads to switch- like control of 
ADH2 expression. In glucose, SNF5 helps repress ADH2. Upon carbon starvation, SNF5 is required 
for efficient induction of ADH2. The SNF5 QLC and histidine residues within seem to be crucial for 
switching between these states.

The SNF5 QLC is required for ADH2 expression and recovery of neutral 
pH
Multiple stresses, including glucose starvation, have been shown to cause a decrease in the pH of 
the cytoplasm and nucleus (nucleocytoplasm) (Dechant et al., 2014; Gores et al., 1989; Trianda-
fillou et al., 2020; Yao and Haddad, 2004). Here, we refer to nucleocytoplasmic pH as intracellular 
pH (pHi). To investigate the relationship between ADH2 expression and pHi, and how these factors 
depend upon SNF5, we engineered strains bearing both the ratiometric fluorescent pH reporter, 
pHluorin (Miesenböck et al., 1998), and the PADH2- mCherry reporter. To calibrate the pHluorin sensor, 
we calculated the ratio of intensities of fluorescence emission after excitation with 405 and 488 nm 
light in cells that were ATP- depleted and permeabilized in media of known pH. We obtained a near 
linear relationship between ratios of fluorescence intensity and pH (Figure 2—figure supplement 
1, Materials and methods). Therefore, these strains allowed us to simultaneously monitor pHi and 
expression of ADH2.

Wild- type cells growing exponentially in 2% glucose had a pHi of ~7.8. Upon acute carbon starva-
tion, cells rapidly acidified to pHi ~ 6.5. Then, during the first hour, two populations arose: an acidic 
population (pHi ~ 5.5), and a second population that recovered to pHi ~ 7 (Figure 2A). Cells at pHi 7 
proceeded to strongly induce expression of the PADH2- mCherry reporter, while cells at pHi 5.5 did not. 
We used fluorescence- activated cell sorting (FACS) to separate these two populations and found that 
cells that neither recovered neutral pH nor expressed the PADH2- mCherry reporter had lower fitness 
relative to the PADH2- mCherry- inducing population, as indicated by lower rates of proliferation on both 
rich and poor carbon sources, and lower tolerance of heat stress (Figure 2—figure supplement 2). 
After 8 hr of glucose starvation, >70% of wild- type cells had induced ADH2 (Figure 2A and C).

https://doi.org/10.7554/eLife.70344
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Figure 2. The SNF5 QLC is required for ADH2 expression and recovery of neutral pH. (A) Representative flow cytometry for WT, ΔQsnf5, or HtoAsnf5 
strains: the x- axis shows nucleocytoplasmic pH (pHi), while the y- axis shows fluorescence from the PADH2- mCherry reporter. Panels show cells grown in 
glucose (top) and then (second to bottom) after 0–8 hr of acute glucose starvation. Percentage of cells in each quadrant is indicated by gray numbers. 
(B) Schematic of quantification scheme: raw data from (A) was fit to a single or double Gaussian curve determined by a least- residuals method. 
(C) Quantification of pHi and PADH2- mCherry expression during acute starvation. The median of each Gaussian for pHi is plotted in (C, top), black and 
gray lines are from induced and uninduced populations, respectively. The height of bars in (C, bottom) indicates the fraction of maximal PADH2- mCherry 
reporter gene expression (WT cells, 8 hr glucose starvation) The darkness of the bars indicates the fraction of the population in the induced versus 
uninduced state. Mean and standard deviation of three biological replicates are shown.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Examples of calibration curves to measure cytosolic pH using pHluorin.

Figure supplement 2. Cells that fail to induce PADH2- mCherry had lower fitness relative to the inducing population.

Figure supplement 3. All strains ultimately express some amount of PADH2- mCherry reporter.

Figure supplement 4. snf5Δ strains only had a slight delay in expression of the PADH2- mCherry reporter.

Figure supplement 5. Recovery of pHi requires new protein translation.

https://doi.org/10.7554/eLife.70344
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We next analyzed cells harboring mutant alleles of the QLC of SNF5. Similarly to WT, both ΔQsnf5 
and HtoAsnf5 strains rapidly acidified upon carbon starvation. However, these strains were defective 
in subsequent neutralization of pHi and in the expression of PADH2- mCherry. At the 4 hr time point, 
>95% of both ΔQsnf5 and HtoAsnf5 cells remained acidic with no detectable expression, while >60% of 
wild- type cells had neutralized and expressed mCherry (Figure 2A and C). Eventually, after 24 hr, the 
majority of mutant cells neutralized to pHi ~7 and induced expression of PADH2- mCherry (Figure 2—
figure supplement 3). Again, complete deletion of SNF5 led to less severe phenotypes than the 
ΔQsnf5 and HtoAsnf5 alleles with only a modest delay in PADH2- mCherry expression (Figure 2—figure 
supplement 4), suggesting that SNF5 plays both activating and inhibitory roles in ADH2 expression. 
Thus, the SNF5 QLC and histidines within are required for the rapid dynamics of both transient acidi-
fication and transcriptional induction of PADH2- mCherry upon acute carbon starvation.

We hypothesized that mutant cells might fail to recover from acidification because transcripts 
controlled by SWI/SNF are responsible for pHi recovery. In this model, SWI/SNF drives expression 
of a set of genes that must be both transcribed and translated. To test this idea, we measured pHi 
in WT cells during carbon starvation in the presence of the cyclohexamine to prevent translation of 
new transcripts. In these conditions, we found that cells experienced a drop in pHi but were unable 
to recover neutral pH (Figure 2—figure supplement 5). Thus, new gene expression is required for 
recovery of pHi.

Transient acidification is required for ADH2 induction upon carbon 
starvation
The acidification of the yeast nucleocytoplasm has been shown to depend upon an acidic extra-
cellular pH (pHe). We took advantage of this fact to manipulate the changes in pHi that occur upon 
carbon starvation. Cell viability was strongly dependent on pHe, decreasing drastically when cells 
were starved for glucose in media at pH ≥ 7.0 for 24 hr (Figure 3—figure supplement 1). Expression 
of PADH2- mCherry expression was also highly dependent on pHe, especially in SNF5 QLC mutants 
(Figure 3A, Figure 3—figure supplement 2). WT cells failed to induce PADH2- mCherry at pHe ≥ 7, but 
induced strongly at pHe ≤ 6.5. RT- qPCR showed similar behavior for the endogenous ADH2 transcript 
(Figure 3—figure supplement 3). ChIP experiments indicated that recruitment of SWI/SNF to the 
ADH2 promoter was also reduced when starvation was performed with media buffered to pHe 7.5 
(Figure  1—figure supplement 7). Furthermore, we found that the nucleocytoplasm of all strains 
failed to acidify when the environment was held at pHe ≥ 7 (Figure 3—figure supplement 4). There-
fore, we conclude that an acidic extracellular environment is required for a decrease in intracellular 
pH upon carbon starvation, and that this intracellular acidification is required for activation of ADH2 
transcription.

Given that intracellular acidification is necessary for ADH2 promoter induction, we next wondered 
if it was sufficient. First, we used the membrane- permeable sorbic acid to allow intracellular acidifica-
tion but prevent pHi recovery. These cells failed to induce PADH2- mCherry, indicating that nucleocyto-
plasmic acidification is not sufficient; subsequent neutralization is also required. Carbon starvation at 
pHe 7.4 prevented transient acidification and likewise prevented expression (Figure 3B, Figure 3—
figure supplement 3). Cells that were first held at pHe 7.4, preventing initial acidification, and then 
switched to pHe 5, thereby causing late acidification, failed to express mCherry after 6 hr. Finally, 
starvation at pHe 5 for 2 hr followed by a switch to pHe 7.4, with a corresponding increase in pHi, led 
to robust PADH2- mCherry expression. Together, these results suggest that transient acidification imme-
diately upon switching to carbon starvation followed by recovery to neutral pHi is the signal for the 
efficient induction of PADH2- mCherry.

Deletion of the SNF5 QLC leads to both failure to neutralize pHi and loss of ADH2 expression. We 
therefore wondered if forcing cells to neutralize pHi would rescue ADH2 expression in a ΔQsnf5 strain. 
This was not the case: the ΔQsnf5 strain still fails to express PADH2- mCherry, even if we recapitulate 
normal intracellular transient acidification (Figure 3B, right). Therefore, the SNF5 QLC is required for 
normal kinetics of transient acidification and for additional steps in ADH2 gene activation.

https://doi.org/10.7554/eLife.70344
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Figure 3. Transient acidification is required for ADH2 induction upon carbon starvation. (A) Expression of PADH2- mCherry reporter gene in WT, ΔQsnf5, 
or HtoAsnf5 strains 8 hr after acute carbon starvation in media titrated to various pH (pHe, see legend, right). Bar height indicates the fraction of maximal 
PADH2- mCherry reporter gene expression (WT cells, pHe 5.5). The darkness of the bars indicates the fraction of the population in the induced versus 
uninduced state (see legend, right). (B) Time courses of glucose starvation with media manipulations to perturb the intracellular pH response, either 
by changing media pH (pHe) or by adding sorbic acid. Top panels show nucleocytoplasmic pH (pHi), black and gray lines from induced and uninduced 
populations, respectively. Bottom panels quantify expression of the PADH2- mCherry reporter gene (as in A). All strains are WT except for the far- right 
panels, which are from a ΔQsnf5 strain.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Deletion of the N- terminal glutamine- rich domain of SNF5 renders cells hypersensitive to starvation at suboptimal extracellular 
pH.

Figure supplement 2. PADH2- mCherry induction requires an acidic extracellular environment and the SNF5 QLC.

Figure supplement 3. Expression of the endogenous ADH2 mRNA requires an acidic extracellular environment and the SNF5 QLC.

Figure supplement 4. Transient acidification of cells requires an acidic extracellular environment.

https://doi.org/10.7554/eLife.70344
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The SNF5 QLC and acidification of the nucleocytoplasm are required 
for efficient widespread transcriptional reprogramming upon carbon 
starvation
We wondered if transient acidification and the QLC of SNF5 were important for transcriptional repro-
gramming on a genome- wide scale. To test this, we performed Illumina RNA- sequencing analysis on 
triplicates of each strain (WT, ΔQsnf5, HtoAsnf5) either growing exponentially in glucose or after acute 
carbon starvation for 4 hr at pHe 5. In addition, to test the pH dependence of the transcriptional 
response, we analyzed WT strains carbon- starved at pHe 7, which prevents intracellular acidification 
(Figure 3B, Figure 3—figure supplement 4).

Principal component analysis showed tight clustering of all exponentially growing samples, indi-
cating that mutation of the QLC of SNF5 does not strongly affect gene expression in rich media 
(Figure 4A). In contrast, there are greater differences between wild- type strains with mutant SNF5 
alleles upon glucose starvation. The genes that accounted for most variation (the first two principal 
components) were involved in carbon transport, metabolism, and stress responses. We defined a 
set of 89 genes that were induced (greater than threefold) and 60 genes that were downregulated 
(greater than threefold) in WT strains upon starvation in media titrated to pHe 5. Many of these genes 
were poorly induced in ΔQsnf5 and HtoAsnf5 mutants, as well as in WT strains starved in media titrated 
to suboptimal pHe 7 (Figure 4B). Figure 4C and D show transcriptional differences between glucose- 
starved strains as volcano plots, emphasizing large- scale differences between WT and ΔQsnf5 strains, 
and similarities between ΔQsnf5 and HtoAsnf5.

We next performed hierarchical clustering analysis (Euclidean distance) of the 149 genes that are 
strongly differentially expressed between strains or at suboptimal pHe 7 (Figure 4E). Based on this 
clustering and some manual curation, we assigned these genes to four groups. Group 1 genes (n = 42) 
were activated in starvation in an SNF5 QLC and pH- dependent manner. They are strongly induced 
in WT, but induction is attenuated both in mutants of the SNF5 QLC and when the transient acidifi-
cation of pHi was prevented by starving cells in media titrated to pHe 7. Gene Ontology (GO) anal-
ysis revealed that these genes are enriched for processes that are adaptive in carbon starvation, for 
example, fatty acid metabolism and the TCA cycle. Group 2 (n = 64) genes were not strongly induced 
in WT, but were inappropriately induced during starvation in SNF5 QLC mutants and during starvation 
at pHe 7. GO analysis revealed that these genes are enriched for stress responses, perhaps because 
the failure to properly reprogram transcription leads to cellular stress. Group 3 genes (n = 51) were 
repressed upon carbon starvation in a pH- dependent but SNF5 QLC- independent manner. They were 
repressed in all strains, but repression failed at pHe 7. Finally, group 4 genes (n = 16) were repressed 
in WT cells in a pH- independent manner, but failed to repress in SNF5 QLC mutants.

We performed an analysis for the enrichment of transcription factors within the promoters of 
each of these gene sets using the YEASTRACT server (Teixeira et al., 2014). These enrichments are 
summarized in Supplementary file 3. Top hits for group 1 included the CAT8 and ADR1 transcription 
factors, which have previously been suggested to recruit the SWI/SNF complex to the ADH2 promoter 
(Biddick et al., 2008b).

In conclusion, both pH changes and the SNF5 QLC are required for correct transcriptional repro-
gramming upon carbon starvation, but the dependencies are nuanced. Mutation of the SNF5 QLC or 
prevention of nucleocytoplasmic acidification appears to trigger a stress response (group 2 genes). 
Another set of genes requires pH change for their repression upon starvation, but this pH sensing is 
independent of SNF5 (group 3). A small set of genes requires the SNF5 QLC but not pH change for 
repression upon starvation (group 4). Finally, a set of genes, including many of the traditionally defined 
‘glucose- repressed genes,’ require both the SNF5 QLC and a pH change for their induction upon 
carbon starvation (group 1). For these genes, point mutation of four histidines in the QLC is almost as 
perturbative as complete deletion of the QLC. We propose that the SNF5 QLC senses the transient 
acidification that occurs upon carbon starvation to elicit transcriptional activation of this gene set. It 
is striking that this set is enriched for genes involved in catabolism, TCA cycle, and metabolism, given 
that these processes are important for energetic adaptation to acute glucose starvation.

https://doi.org/10.7554/eLife.70344
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Figure 4. The SNF5 QLC and acidification of the nucleocytoplasm are required for efficient widespread transcriptional reprogramming upon carbon 
starvation. (A) Principal component (PC) analysis of three RNA- seq biological replicates for each condition tested. (B) Expression levels of genes that 
were greater than threefold induced or repressed upon carbon starvation in WT strains are plotted for each SNF5 allele. (C) Volcano plot showing the 
log2 ratio of expression levels in WT versus ΔQsnf5 strains (x- axis) and p- values for differential expression (y- axis). Genes with significantly different 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.70344
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The SNF5 QLC mediates a pH-sensitive transcription factor interaction 
in vitro
We reasoned that pHi changes could affect the intrinsic nucleosome remodeling activity of SWI/SNF 
or alternatively might impact the interactions of SWI/SNF with transcription factors. Indeed, recent 
structural evidence (He et al., 2021) shows that the QLCs of not only SNF5 but also several other 
SWI/SNF subunits appear to be poised for interaction with transcription factors on DNA immediately 
downstream of the nucleosome (Figure 5—figure supplement 1). We used a fluorescence- based 
strategy in vitro to investigate these potential pH- sensing mechanisms. A center- positioned, recom-
binant mononucleosome was assembled on a 200 bp DNA fragment containing a ‘601’ nucleosome 
positioning sequence (Dechassa et al., 2008; Figure 5A). The nucleosomal substrate contained two 
binding sites for the Gal4 activator located upstream and 68 base pairs of linker DNA downstream of 
the nucleosome. The mononucleosome contained a Cy3 fluorophore covalently attached to the distal 
end of the template DNA, and Cy5 was attached to the H2A C- terminal domain. The Cy3 and Cy5 
fluorophores can function as a Förster resonance energy transfer (FRET) pair only when the Cy3 donor 
and Cy5 acceptor are within an appropriate distance (see also Li and Widom, 2004). In the absence 
of SWI/SNF activity, the center- positioned nucleosome has a low FRET signal, but ATP- dependent 
mobilization of the nucleosome toward the distal DNA end leads to an increase in FRET (Brune et al., 
1994; Luger et al., 1999; Sen et al., 2017; Smith and Peterson, 2005; Zhou and Narlikar, 2016; 
Figure 5). In the absence of competitor DNA, SWI/SNF does not require an interaction with a tran-
scription factor to be recruited to the mononucleosome and thus intrinsic nucleosome remodeling 
activity can be assessed independently of recruitment. In this assay, SWI/SNF complexes containing 
either ΔQsnf5p or HtoAsnf5 retained full nucleosome remodeling activity (Figure 5B–D), as well as full 
DNA- stimulated ATPase activity (Figure 5—figure supplement 2). Furthermore, these activities were 
similar at pH 6.5, 7, or 7.6. Thus, we conclude that the SNF5 QLC does not sense pH by modifying its 
intrinsic ATPase and nucleosome remodeling activity, at least in this in vitro context.

Next, we assessed if the SNF5 QLC and pH changes could affect SWI/SNF interactions with tran-
scription factors. SWI/SNF remodeling activity can be targeted to nucleosomes in vitro by Gal4 deriv-
atives that contain acidic activation domains, an archetypal example of which is VP16 (Yudkovsky 
et al., 1999). Indeed, it was previously demonstrated that the QLC of Snf5p mediates interaction 
with the Gal4- VP16 transcription factor (Prochasson et al., 2003). To assess recruitment of SWI/SNF, 
we set up reactions with an excess of nonspecific competitor DNA. In these conditions, there is very 
little recruitment and remodeling without interaction with a transcription factor bound to the mono-
nucleosome DNA (Figure 5E and F). In this context, we found that the QLC of SNF5 was required 
for rapid, efficient recruitment of SWI/SNF by the Gal4- VP16 activator, and that the pH of the buffer 
affected this recruitment (Figure 5F). Within the physiological pH range (6.5–7.6), recruitment and 
remodeling increased with pH. This behavior might correspond to the recruitment of SWI/SNF to 
genes that are active at high pHi during growth in glucose. We predict that interactions with transcrip-
tion factors at glucose- repressed genes would show the opposite behavior, that is, recruitment would 
be increased at lower pHi. SWI/SNF complexes deleted for the SNF5 QLC (containing ΔQsnf5p) had 
constitutively lower recruitment and were completely insensitive to pH changes over this same range 
(Figure  5G). SWI/SNF complexes containing HtoAsnf5p were even more defective that the ΔQsnf5 
allele with respect to recruitment to the VP16 transcription factor (Figure 5H); this recruitment was 
barely above background levels at all pH values. Therefore, we conclude that the SNF5 QLC can sense 
pH changes by modulating interactions between SWI/SNF and transcription factors. Furthermore, 
these results suggest that the histidines within the SNF5 QLC must be present and deprotonated to 
enable interaction with VP16.

expression are indicated in red (log2 fold change > 1 and Wald test adjusted p- value<0.05). (D) Volcano plot as in (C) but comparing expression levels 
in HtoAsnf5 strains to ΔQsnf5 strains. (E) Hierarchically clustered heat map showing expression values of 149 genes with a significant change in expression 
upon starvation of WT cells (log2 fold change > 1 and Wald test adjusted p- value<0.05). Color code indicates gene expression relative to the mean 
expression of that gene across all strains and conditions, with red indicating high and blue indicating low values (see legend). Three biological replicates 
are shown for each experiment. Strain and condition identities are indicated at the bottom of each column. Four groups of genes with similar behavior 
are indicated to the left. Gene Ontology enrichment results for nine clusters of genes are shown to the right.

Figure 4 continued

https://doi.org/10.7554/eLife.70344
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Figure 5. The SNF5 QLC mediates a pH- sensitive transcription factor interaction in vitro. (A) Schematic: a Cy3 
donor fluorophore was attached to one end of the DNA, and the histone H2A C- termini were labeled with 
a Cy5 acceptor fluorophore. ATP- dependent mobilization of the nucleosome to the DNA increases Förster 
resonance energy transfer (FRET), leading to increased emission at 670 nm. (B) Representative kinetic traces for 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.70344
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Protonation of histidines leads to conformational expansion of the 
SNF5 QLC
How might pH change be sensed by SNF5? As described above (Figure 1B), glutamine- rich low- 
complexity sequences (QLCs) are enriched for histidines, and they are also depleted for charged 
amino acids (Figure 1B). Charged amino acids have repeatedly been shown to govern the conforma-
tional behavior of disordered regions (Mao et al., 2010; Müller- Späth et al., 2010; Sorensen and 
Kjaergaard, 2019). Given that histidine protonation alters the local charge density of a sequence, 
we hypothesized that the charge- depleted QLCs may be poised to undergo protonation- dependent 
changes in conformational behavior. To test this idea, we performed all- atom Monte Carlo simula-
tions to assess the conformational ensemble of a 50 amino acid region of the SNF5 QLC (residues 
71–120) that contained three histidines, two of which we had mutated to alanine in our experiments 
(Figure 6A). We performed simulations with histidines in both uncharged and protonated states to 
mimic possible charges of this polypeptide at the pH found in the nucleocytoplasm in glucose and 
carbon starvation, respectively. These simulations generated ensembles of almost 50,000 distinct 
conformations (representative images shown in Figure 6B). To quantify conformational changes, we 
examined the radius of gyration, a metric that describes the global dimensions of a disordered region 
(Figure 6C). Protonation of the wild- type sequence led to a striking increase in the radius of gyration, 
driven by intramolecular electrostatic repulsions (Figure  6D, left). In contrast, when 2/3 histidines 
were replaced with alanines, no such change was observed (Figure 6D, right). For context, we also 
calculated an apparent scaling exponent (νapp), a dimensionless parameter that can also be used to 
quantify chain dimensions. This analysis showed that protonation of the wild- type sequence led to 
a change in νapp from 0.48 to 0.55, comparable to the magnitude of changes observed in previous 
studies of mutations that fundamentally altered intermolecular interactions in other low- complexity 
disordered regions (Martin et al., 2020; Sorensen and Kjaergaard, 2019). These results suggest 
that small changes in sequence charge density can elicit a relatively large change in conformational 
behavior. An analogous (albeit less pronounced) effect was observed for the second QLC subregion 
that we mutated (residues 195–233) (Figure 6—figure supplement 1). Taken together, our results 
suggest that charge- depleted disordered regions (such as QLCs) are poised to undergo pH- depen-
dent conformational rearrangement. This inference offers the beginnings of a mechanism for pH 
sensing by SWI/SNF: the conformational expansion of the QLC sequence upon nucleocytoplasmic 
acidification may tune the propensity for SWI/SNF to interact with transcription factors (Figure 6E).

Discussion
Intracellular pH changes occur in many physiological contexts, including cell cycle progression 
(Gagliardi and Shain, 2013), the circadian rhythm of crassulacean acid metabolism plants (Hafke 
et al., 2001), oxidative stress (van Schalkwyk et al., 2013), heat shock (Triandafillou et al., 2020), 
osmotic stress (Karagiannis and Young, 2001), and changes in nutritional state (Jacquel et al., 2020; 
Orij et al., 2009). However, the physiological role of these pHi fluctuations and the molecular mech-
anisms to detect them remain poorly understood. Prior results have emphasized the inactivation of 
processes in response to cytosolic acidification (Joyner et al., 2016; Munder et al., 2016; Petrovska 

WT (B), ΔQsnf5p (C), and HtoAsnf5 (D) SWI/SNF complexes at pH 7.6 (blue), 7.0 (green), or 6.5 (orange). There is 
no competitor DNA, so these traces indicate intrinsic remodeling activity without requirement for recruitment by 
transcription factors. (E) Schematic: in the presence of excess competitor DNA, SWI/SNF- dependent remodeling 
requires recruitment by a transcription factor (Gal4- VP16). (D) Representative kinetic traces for WT (F), ΔQsnf5p 
(G), and HtoAsnf5 (H) SWI/SNF complexes at pH 7.6 (blue), 7.0 (green), or 6.5 (orange). Inset on the WT panel 
(F) shows the first 100 s of the assay after ATP addition. All traces are averages of 2–4 experiments and represent 
FRET normalized to values prior to addition of ATP.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. QLCs of SWI/SNF cluster around putative transcription factor interaction sites, as do low- 
complexity sequences of human BAF complex.

Figure supplement 2. Basal ATPase activity is not affected by pH, and Förster resonance energy transfer (FRET) 
changes require ATP hydrolysis.

Figure 5 continued

https://doi.org/10.7554/eLife.70344
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Figure 6. Protonation of histidines leads to conformational expansion of the SNF5 QLC. (A) Schematic of the SNF5 gene (center) with the N- terminal 
QLC in orange and the two simulated peptides in dark orange. Sequences of the simulated peptides and identities of histidines mutated in both the 

HtoAsnf5 yeast strain and in simulations are indicated. (B) Representative images of conformations sampled in Monte Carlo all- atom simulations. (C) 
Cartoon depicting quantification of radius of gyration (Rg). (D) Radius of gyration (Rg, y- axis) of simulations of amino acids 71–120 of the SNF5 QLC with 
histidines either neutral (pH 7.4) or protonated (pH 5.0). Left two datasets are for the native peptide, right two datasets are with 2/3 histidines (H106 and 

Figure 6 continued on next page
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et  al., 2014). However, it is unclear how necessary modifications to the cell can occur if cellular 
dynamics are uniformly decreased. Much less has been reported regarding a potential role of fluc-
tuations in pHi as a signal to activate specific cellular programs. In this work, we found that transient 
acidification is required for activation of glucose- repressed genes. Therefore, our work establishes a 
positive regulatory role for nucleocytoplasmic pH changes during carbon starvation.

Previous studies of intracellular state during glucose starvation based on population averages 
reported a simple decrease in pHi (Orij et al., 2009). In this work, we used single- cell measurements 
of both pHi and gene expression, and found that two coexisting subpopulations arose upon acute 
glucose starvation, one with pHi  ~ 5.5  and a second at  ~6.5. The latter population recovered to 
neutral pHi and then induced glucose- repressed genes, while the former remained dormant in an 
acidified state. We have not yet determined the mechanism that drives the bifurcation in pH response. 
It is possible that this bistability provides a form of bet- hedging (Levy et al., 2012) where some cells 
attempt to respond to carbon starvation, while others enter a dormant state (Munder et al., 2016). 
However, we have yet to discover any condition where the population with lower pHi and delayed 
transcriptional activation has an advantage. An alternative explanation is that these cells are failing to 
correctly adapt to starvation, perhaps undergoing a metabolic crisis, as suggested in a recent study 
(Jacquel et al., 2020).

It is becoming clear that intracellular pH is an important mechanism of biological control. It was 
previously shown that the protonation state of phosphatidic acid (PA) determines binding to the tran-
scription factor Opi1, coupling membrane biogenesis and intracellular pH (Young et al., 2010). We 
focused our studies on the N- terminal region of SNF5 because it is known to be important for the 
response to carbon starvation and contains a large low- complexity region enriched in both glutamine 
and histidine residues. Histidines are good candidates for pH sensors as they can change protonation 
state over the recorded range of physiological pH fluctuations, and their pKa can be tuned substan-
tially depending on local sequence context. Consistent with this hypothesis, we found that the SNF5 
QLC and the histidines embedded within were required for transcriptional reprogramming.

Our in vitro assays showed that the intrinsic ATPase and nucleosome remodeling activities of SWI/
SNF are robust to pH changes from 6.5 to 7.6. However, recruitment of the SWI/SNF complex by a 
model transcription factor (GAL4- VP16) was pH- sensitive, and this pH dependence was dependent on 
both the SNF5 QLC and the four central histidines within this domain. In this case, the recruitment by 
GAL4- VP16 was inhibited at pH 6.5. We speculate that low pHi favors release of SWI/SNF from acti-
vators that it is bound to in glucose conditions, and then the subsequent partial recovery in pHi could 
allow it to bind to a different set of activators (e.g., ADR1 and CAT8), thus recruiting it to genes that 
are expressed during starvation. This model is consistent with the requirement for both acidification 
and subsequent neutralization for expression of ADH2 (Figure 3). In principle, the conformational 
dynamics of the SNF5 QLC could be distinct at all three stages (Figure 6E). There are almost certainly 
additional pH- sensing elements of the transcriptional machinery that also take part in this reprogram-
ming; multiple candidates are present among the of transcription factors that were enriched in our 
RNA- seq experiments (Supplementary file 3).

Low- complexity sequences, including QLCs, tend to be intrinsically disordered and therefore 
highly solvent exposed. A recent large- scale study of intrinsically disordered sequences showed that 
their conformational behavior is inherently sensitive to changes in their solution environment (Hole-
house and Sukenik, 2020; Moses et  al., 2020). Similarly, our simulations revealed that histidine 

H109) replaced with alanine, mimicking the HtoAsnf5 allele. Points represent the mean Rg from all conformations sampled in each independent simulation 
(beginning from distinct random initial conformers). Bars represent the mean values of all simulations. (E) Model of SWI/SNF regulation during carbon 
starvation. (Top) In glucose (pHi ~ 7.8), the SNF5 QLC is unprotonated. SWI/SNF is engaged by transcription factors that prevent transcription of glucose 
repressed genes or that activate other genes (TFA). (Middle) Upon acute carbon starvation, pHi drops to ~6.5, leading to protonation of histidines 
in the SNF5 QLC. Conformational expansion of the QLC may aid the release of SWI/SNF from some transcription factors (TFA) and potentially drive 
recruitment to others (not shown). (Bottom) As the cell adapts to carbon starvation, pHi neutralizes to ~7.0. Histidines within the SNF5 QLC may be 
partially protonated? The pKa of histidine is highly context- dependent. The QLC may aid recruitment of SWI/SNF to the promoters of glucose- repressed 
genes, thus leading to their expression.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. A second peptide within the N- terminal QLC of SNF5 undergoes conformational expansion upon protonation.

Figure 6 continued
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protonation may lead the SNF5 QLC to expand dramatically. This provides a potential mechanism for 
pH sensing: upon acidification, histidines become positively charged, leading QLCs to adopt a more 
expanded state, perhaps revealing short linear interaction motifs (SLIMs), reducing the entropic cost 
of binding to interaction partners, preventing polar- mediated protein- protein interactions, or facili-
tating electrostatic- mediated contacts. The enrichment of histidines in QLCs hints that this could be a 
general, widespread mechanism to regulate cell biology in response to pH changes.

Glutamine- rich low- complexity sequences have been predominantly studied in the context of 
disease. Nine neurodegenerative illnesses, including Huntington’s disease, are thought to be caused 
by neurotoxic aggregation seeded by proteins that contain polyglutamines created by expan-
sion of CAG trinucleotide repeats (Fan et al., 2014). However, polyglutamines and glutamine- rich 
sequences are relatively abundant in Eukaryotic cells: more than 100 human proteins contain QLCs, 
and the Dictyostelium and Drosophilid phyla have QLCs in ~10% and ~5% of their proteins, respec-
tively (Schaefer et al., 2012). Furthermore, there is clear evidence of purifying selection to maintain 
polyQs in the Drosophilids (Huntley and Clark, 2007). This prevalence and conservation suggest an 
important biological function for these sequences. Recent work in Ashbya gossypii has revealed a role 
for QLC- containing proteins in the organization of the cytoplasm through phase separation into liquid 
droplets to enable subcellular localization of signaling molecules (Zhang et al., 2015). More gener-
ally, polyglutamine has been shown to drive self- association into a variety of higher- order assemblies, 
from fibrils to nanoscopic spheres to liquid droplets (Crick et al., 2013; Peskett et al., 2018; Posey 
et al., 2018). Taken together, these results imply that QLCs may offer a general mechanism to drive 
protein- protein interactions. In this study, we have identified a role for QLCs in the SWI/SNF complex 
as pH sensors. Our current model (Figure 6E) is that the SNF5 QLC partakes in heterotypic protein 
interactions that are modulated by protonation of histidines when the cell interior acidifies. However, 
we do not rule out the possibility for homotypic interactions and higher- order assembly of multiple 
SWI/SNF complexes.

All cells must modify gene expression to respond to environmental changes. This phenotypic plas-
ticity is essential to all life, from single- celled organisms fighting to thrive in an ever- changing envi-
ronment, to the complex genomic reprogramming that must occur during development and tissue 
homeostasis in plants and animals. Despite the differences between these organisms, the mecha-
nisms that regulate gene expression are highly conserved. Changes in intracellular pH are increasingly 
emerging as a signal through which life perceives and reacts to its environment. This work provides 
a new role for glutamine- rich low- complexity sequences as molecular sensors for these pH changes.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers

Additional 
information

Gene (Saccharomyces 
cerevisiae) SNF5 https://www.yeastgenome.org/ SGD:S000000493

Gene (S. cerevisiae) SNF2 https://www.yeastgenome.org/ SGD:S000005816

Gene
(pHluorin) pHluorin doi:10.1099/mic.0.022038-0

Strain, strain background 
(S. cerevisiae S288c) BY4741

doi:https://doi.org/10.1002/(SICI)1097-0061 
(19980130)14:2<115::AID-YEA204>3.0.CO;2-2

All strains used in this 
study are derived form 
BY4741

Other LH3647 ADH2::PADH2- mCherry- URA3 snf2::SNF2- TAP- His3MX6

Yeast strain used 
to purify SWI/SNF 
complex

Other LH3649
ΔQsnf5- HIS3 ADH2::PADH2- mCherry- URA3 snf2::SNF2- 
TAP- kanMX6

Yeast strain used 
to purify SWI/SNF 
complex containing 
ΔQsnf5

https://doi.org/10.7554/eLife.70344
https://www.yeastgenome.org/
https://www.yeastgenome.org/
https://doi.org/10.1099/mic.0.022038-0
https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
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Reagent type (species) 
or resource Designation Source or reference Identifiers

Additional 
information

Other LH3652
HtoAsnf5- HIS3 ADH2::PADH2- mCherry- URA3 snf2::SNF2- 
TAP- kanMX6

Yeast strain used 
to purify SWI/SNF 
complex containing 
HtoAsnf5

Recombinant DNA 
reagent Plasmid (pRS316) GenBank: U03442

Used to complement 
SNF5 gene in snf5Δ 
strains prior to removal 
using 5FOA

Recombinant DNA 
reagent

Plasmid
(pRS306) GenBank: U03438

SNF5 and snf5 mutant 
alleles were all cloned 
into pRS306 and 
pRS303

Recombinant DNA 
reagent

Plasmid
(pRS303) GenBank: U03435

SNF5 and snf5 mutant 
alleles were all cloned 
into pRS306 and 
pRS303

Antibody
Rabbit polyclonal 
IgG Sigma Cat# 12- 370

Antibody

Fluorescently 
labeled goat anti- 
rabbit polyclonal LI- COR Biosciences Cat# 926- 68071

Western blot (1:15,000 
dilution)

Antibody
Rabbit polyclonal
anti- glucokinase US Biological Cat# H2035- 01

Western blot (1:3000 
dilution)

Antibody

Fluorescently 
labeled goat anti- 
rabbit polyclonal LI- COR Biosciences Cat# 926- 32211

Western blot (1:15,000 
dilution)

 Continued

 Continued on next page

Yeast strains used in this study
All strains were derived from LH2145.

Strain Genotype

LH2145 WT, Mat a from sporulation of BY4743: ura3Δ0 his3Δ0 leu22Δ0 met15Δ0

LH2090 ΔQsnf5::kanMX6

LH2971 SNF5- TAP- His3MX6

LH2973 ΔQsnf5- TAP- His3MX6

LH2974 HtoAsnf5- HIS3

LH2975 HtoAsnf5- TAP- kanMX6

LH2991 ADH2::PADH2- mCherry- URA3

LH2992 ΔQsnf5- kanMX6 ADH2::PADH2- mCherry- URA3

LH2993 HtoAsnf5- HIS3 ADH2::PADH2- mCherry- URA3

LH3486 met15Δ0 SNF5::kanMX6 (CEN/ARS- SNF5::URA3)

LH3513 snf5Δ::kanMX6 ADH2::PADH2- mCherry- URA3 (CEN/ARS- SNF5::URA3)

LH3632 snf5Δ::kanMX6 ADH2::PADH2- mCherry- URA3 TRP1::pHluorin- natMX6 (CEN/ARS- SNF5::URA3)

LH3647 ADH2::PADH2- mCherry- URA3 snf2::SNF2- TAP- His3MX6

LH3649 ΔQsnf5- HIS3 ADH2::PADH2- mCherry- URA3 snf2::SNF2- TAP- kanMX6

LH3652 HtoAsnf5- HIS3 ADH2::PADH2- mCherry- URA3 snf2::SNF2- TAP- kanMX6

LH3705 SNF5 ADH2::PADH2- mCherry- URA3 leu2::pHluorin- LEU2

https://doi.org/10.7554/eLife.70344
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Strain Genotype

LH3707 ΔQsnf5::kanMX6 ADH2::PADH2- mCherry- URA3 leu2::pHluorin- LEU2

LH3713 HtoAsnf5- HIS3 ADH2::PADH2- mCherry- URA3 leu2::pHluorin- LEU2

Plasmids used in this study

Plasmid Identity

pLH226 pFA6a- ΔQsnf5- GFP(S65T)- KANMX6

pLH416 pFA6a-SNF5- GFP- KANMX6

pLH887 pRS316- SNF5 (CEN/ARS plasmid)

pLH931 pFA6a-4HtoAsnf5- KANMX6

pLH963 pFA6a-SNF5- TAP- KANMX6

pLH964 pFA6a-SNF5- TAP- HIS3MX6

pLH998 pRS306- PADH2- mCherry

pLH1085 pFA6a-6HtoAsnf5- HIS3MX6

pLH1093 pFA6a-3’snf2- TAP- KANMX6

pLH1097 pRS305- PTDH3- pHluorin

pLH1206 pFA6a-3’snf2- TAP- NATMX

Cloning and yeast transformations
Yeast strains used in this study were all in the S288c strain background (derived from BY4743). The 
sequences of all genes in this study were obtained from the S. cerevisiae genome database (http://
www.yeastgenome.org/).

We cloned the various SNF5 alleles into plasmids from the Longtine/Pringle collection (Longtine 
et al., 1998). We assembled plasmids by PCR or gene synthesis (IDT gene blocks) followed by Gibson 
cloning (Gibson et al., 2009). Then, plasmids were linearized and used to overwrite the endogenous 
locus by sigma homologous recombination using homology to both ends of the target gene.

The ΔQsnf5 gene lacks the N- terminal 282 amino acids that comprise a glutamine- rich low- 
complexity domain. Methionine 283 serves as the ATG for the ΔQ- SNF5 gene. In the HtoAsnf5 allele, 
histidines 106, 109, 213, and 214 were replaced by alanine using mutagenic primers to amplify three 
fragments of the QLC region, which were combined by Gibson assembly into an SNF5 parent plasmid 
linearized with BamH1 and Sac1.

We noticed that the slow growth null strain phenotype of the snf5Δ was partially lost over time, 
presumably due to suppressor mutations. Therefore, to avoid these spontaneous suppressors, we first 
introduced a CEN/ARS plasmid carrying the SNF5 gene under its own promoter and the URA3 auxo-
trophic selection marker. Then, a kanMX6 resistance cassette, amplified with primers with homology 
at the 5′ and 3′ of the SNF5 gene, was used to delete the entire chromosomal SNF5 ORF by homol-
ogous recombination. We subsequently cured strains of the CEN/ARS plasmid carrying WT SNF5 by 
negative selection against its URA3 locus by streaking for single colonies on 5- FOA plates immedi-
ately before each experiment to analyze the snf5Δ phenotype.

The PADH2- mCherry reporter was cloned into integrating pRS collection plasmids (Chee and Haase, 
2012). URA3 (pRS306) or LEU2 (pRS305) were used as auxotrophic selection markers. The 835 base 
pairs upstream of the ADH2 gene were used as the promoter (PADH2). PADH2 and the mCherry ORF were 
amplified by PCR and assembled into linearized pRS plasmids (Sac1/Asc1) by Gibson assembly. These 
plasmids were cut in the middle of the ADH2 promoter using the Sph1 restriction endonuclease and 
integrated into the endogenous ADH2 locus by homologous recombination.

The pHluorin gene was also cloned into integrating pRS collection plasmids. URA3 (pRS306) and 
LEU2 (pRS305) were used for selection. The plasmid with the pHluorin gene was obtained as described 

 Continued

https://doi.org/10.7554/eLife.70344
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in Orij et al., 2009. We amplified the pHluorin gene and the strong TDH3 promoter and used Gibson 
assembly to clone these fragments into pRS plasmids linearized with Sac1 and Asc1. Another strategy 
was to clone the pHluorin gene and a natMX6 cassette into the integrating pRS304 plasmid (that 
contains TRP1), which was then linearized within the TRP1 cassette using HindIII and integrated into 
the TRP1 locus.

A C- terminal TAP tag was used to visualize Snf5 and Snf2 proteins in Western blots. pRS plasmids 
were used, but the cloning strategy was slightly different. A 3′ fragment of the SNF5 and SNF2 genes 
was PCR amplified without the Stop codon. This segment does not contain a promoter or an ATG 
codon for translation initiation. The TAP tag was then amplified by PCR and cloned together with the 
3′ of SNF5 and SNF2 ORFs by Gibson assembly into pRS plasmids with linearized Sac1 and Asc1. Plas-
mids were linearized in the 3′ of the SNF5 or SNF2 ORFs with StuI and XbaI, respectively, to linearize 
the plasmid allowing integration it into the 3′ of each gene locus by homologous recombination. 
Therefore, transformation results in a functional promoter at the endogenous locus fused to the TAP 
tag.

The SNF5- GFP strain was obtained from the yeast GFP collection (Huh et al., 2003), a gift of the 
Drubin/Barnes laboratory at UC Berkeley. The SNF2- GFP fused strain was made by the same strategy 
used for the TAP tagged strain above.

Supplementary files 6 and 7 list strains and plasmids generated in this study.

Culture media
Most experiments, unless indicated, were performed in synthetic complete (SC) media (13.4 g/L yeast 
nitrogen base and ammonium sulfate; 2 g/L amino acid mix and 2% glucose). Carbon starvation media 
was SC media without glucose, supplemented with sorbitol, a nonfermentable carbon source to avoid 
osmotic shock during glucose starvation (6.7 g/L YNB + ammonium sulfate; 2 g/L amino acid mix and 
100 mM sorbitol). The pH of starvation media (pHe) was adjusted using NaOH.

Growth assays
Growth rates were determined in an Infinite M200 plate reader (Tecan) in 96- well microtiter plates 
using 200 μL total volume, cultured at 30°C and agitated at 800 rpm. Cells were pre- cultured over-
night to log- phase (or subjected to other indicated pre- culture conditions) and then seeded at an 
A600 of 0.1 (based on a path length of ~0.3 cm) in SC media with various carbon sources. All measure-
ments were performed in triplicate.

Glucose starvation
Cultures were incubated in a rotating incubator at 30°C and grown overnight (14–16 hr) to an OD 
between 0.2 and 0.3. Note that it is extremely important to prevent culture OD from exceeding 0.3, 
and results are different if cells are allowed to saturate and then diluted back. Thus, it is imperative 
to grow cultures from colonies on plates for >16 hr without ever exceeding OD 0.3 to obtain repro-
ducible results. Typically, we would inoculate 3 mL cultures and make a series of 4–5 1/5 dilutions of 
this starting culture to be sure to catch an appropriate culture the following day. 3 mL of OD 0.2–0.3 
culture were centrifuged at 6000 rpm for 3 min and resuspended in 3 mL starvation media (SC sorbitol 
at various pHe). This spin and resuspension was repeated two more times to ensure complete removal 
of glucose. Finally, cells were resuspended in 3 mL of starvation media. For flow cytometry, 200 μL 
samples were transferred to a well of a 96- well plate at each time point. During the course of time- 
lapse experiments, culture aliquots were set aside at 4°C. An LSR II flow cytometer with an HTS auto-
mated sampler was used for all measurements. 10,000 cells were analyzed at each time point.

Nucleocytoplasmic pH measurements
Nucleocytoplasmic pH (pHi) was measured by flow cytometry or microscopy. The ratiometric, pH- sen-
sitive GFP variant, pHluorin, was used to measure pH based on the ratio of fluorescence from two 
excitation wavelengths. The settings used for LSR II flow cytometer were AmCyan (excitation 457, 
emission 491) and FITC (excitation 494, emission 520). AmCyan emission increases with pH, while FITC 
emission decreases. A calibration curve was made for each strain in each experiment. To generate 
a calibration curve, glycolysis and respiration were poisoned using 2- deoxyglucose and azide. This 
treatment leads to a complete loss of cellular ATP, and the nucleocytoplasmic pH equilibrates to the 

https://doi.org/10.7554/eLife.70344
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extracellular pH. We used the calibration buffers published by Patricia Kane’s group (Diakov et al., 
2013): 50 mM MES (2- (N- morpholino) ethanesulfonic acid), 50 mM HEPES (4- (2- hydroxyethyl)- 1- piper
azineethanesulfonic acid), 50 mM KCl, 50 mM NaCl, 0.2 M ammonium acetate, 10 mM sodium azide, 
10 mM 2- deoxyglucose. Buffers were titrated to the desired pH with HCl or NaOH. Sodium azide and 
2- deoxyglucose were always added fresh.

RT-qPCR
For qPCR and RNA- seq, RNA was extracted with the ‘High pure RNA isolation kit’ (Roche) following 
the manufacturer’s instructions. Three biological replicates were performed. cDNAs and qPCR were 
made with iSCRIPT and iTAQ universal SYBR green supermix by Bio- Rad, following the manufacturer’s 
instructions. Samples processed were exponentially growing culture (+Glu) or acute glucose star-
vation for 4 hr in media titrated to pH 5.5 or 7.5. Primers for qPCR were taken from Biddick et al., 
2008a; for ADH2 and FBP1 genes: forward (GTC TAT CTC CAT TGT CGG CTC), reverse (GCC CTT 
CTC CAT CTT TTC GTA), and forward (CTT TCT CGG CTA GGT ATG TTG G), reverse (ACC TCA GTT 
TTC CGT TGG G). ACT1 was used as an internal control; primers were: forward (TGG ATT CCG GTG 
ATG GTG TT), reverse (TCA AAA TGG CGT GAG GTA GAG A).

RNA-sequencing
We performed RNA- sequencing analysis to determine the extent of the requirement for the SNF5 
QLC in the activation of glucose- repressed genes. Three biological replicates were performed. Total 
RNA was extracted from WT, ΔQ- snf5, and HtoAsnf5 strains during exponential growth (+Glu) and 
after 4 hr of acute glucose starvation. In addition, WT strains were acutely starved in media titrated 
to pH 7. Next, poly- A selection was performed using Dynabeads and libraries were performed 
following the manufacturer’s indications. Sequencing of the 32 samples was performed on an Illu-
mina HiSeq on two lanes. RNA- seq data were aligned to the University of California, Santa Cruz 
(UCSC), sacCer2 genome using Kallisto (0.43.0, http://www.nature.com/nbt/journal/v34/n5/full/nbt. 
3519.html) and downstream visualization and analysis was in R (3.2.2). Differential gene expres-
sion analysis, heat maps, and volcano plots were created using DESeq2. A Wald test was used 
to determine differentially expressed genes. Euclidean distance was used to calculate clustering 
for heat maps, with some manual curation to remove small clusters with no significant GO hits, 
and to consolidate clusters that had similar behavior. RNA- seq R- code can be found at https:// 
github.com/gbritt/SWI_SNF_pH_Sensor_RNASeq., (copy archived at swh:1:rev:802f3d233210c-
02c66b745e414a6f7aa1385e379). RNA- seq datasets are deposited at GEO accession number 
GSE174687 (available here).

Western blots
Strains containing SNF5 and SNF2 fused to the TAP tag were used. Given the low concentration of 
these proteins, they were extracted with trichloroacetic acid (TCA): 3  mL culture was pelleted by 
centrifugation for 2 min at 6000 rpm and then frozen in liquid nitrogen. Pellets were thawed on ice and 
resuspended in 200 µL of 20% TCA, ~0.4 g of glass beads were added to each tube. Samples were 
lysed by bead beating four times for 2 min with 2 min of resting in ice in each cycle. Supernatants were 
extracted using a total of 1 mL of 5% TCA and precipitated for 20 min at 14,000 rpm at 4°C. Finally, 
pellets were resuspended in 212 µL of Laemmli sample buffer and pH adjusted with ~26 µL of Tris 
buffer pH 8. Samples were run on 7–12% gradient polyacrylamide gels with Thermo Fisher PageRuler 
prestained protein ladder 10–18 kDa. Proteins were transferred to a nitrocellulose membrane, which 
was then blocked with 5% nonfat milk and incubated with a rabbit IgG primary antibody (which binds 
to the protein A moiety of the TAP tag) for 1 hr and then with fluorescently labeled goat anti- rabbit 
secondary antibody IRDye 680RD goat- anti- rabbit (LI- COR Biosciences, Cat# 926- 68071, 1:15,000 
dilution). Anti- glucokinase was used as a loading control (rabbit- anti- Hxk1, US Biological, Cat# H2035- 
01, RRID:AB_2629457, Salem, MA, 1:3,000 dilution) followed by IRDye 800CW goat- anti- rabbit (LI- 
COR Biosciences, Cat# 926- 32211, 1:15,000 dilution). Membranes were visualized using a LI- COR 
Odyssey CLx scanner with Image Studio 3.1 software. Fluorescence emission was quantified at 700 
and 800 nM.

https://doi.org/10.7554/eLife.70344
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Co-immunoprecipitation of SWI/SNF complex
To evaluate the assembly state of the SWI/SNF complex, we immunoprecipitated Snf2p. To enable 
this experiment, we constructed strains in which the SNF2 gene was tagged at the C- terminus with a 
TAP tag (Puig et al., 2001). For each purification, 6 L of cells were grown in YPD to an OD of 1.2. Cells 
were broken open using glass beads in buffer A (40 mM HEPES [K+], pH 7.5, 10% glycerol, 350 mM 
KCl, 0.1% Tween- 20, supplemented with 20 µg/mL leupeptin, 20 µg/mL pepstatin, 1 µg/mL benzami-
dine hydrochloride, and 100 µM PMSF) using a BioSpec bead beater followed by treatment with 75 
units of benzonase for 20 min (to digest nucleic acids). Heparin was added to a final concentration of 
10 µg/mL. The extract was clarified by first spinning at 15,000 rpm in a SS34 Sorvall rotor for 30 min 
at 4°C, followed by centrifugation at 45,000 rpm for 1.5 hr at 4°C in a Beckman ultracentrifuge. The 
soluble extract was incubated with IgG Sepharose beads for 4 hr at 4°C using gentle rotation. IgG 
Sepharose bound proteins were washed five times in buffer A and once in buffer B (10 mM Tris- HCl, 
pH 8.0, 10% glycerol, 150 mM NaCl, 0.5 mM EDTA, 0.1% NP40, 1 mM DTT, supplemented with 20 µg/
mL leupeptin, 20 µg/mL pepstatin, 1 µg/mL benzamidine hydrochloride, and 100 µM PMSF). Bound 
protein complexes were incubated in buffer B with TEV protease overnight at 4°C using gentle rota-
tion. The eluted protein was collected, CaCl2 was added to a final concentration of 2 mM and bound 
to Calmodulin Sepharose beads for 4 hr at 4°C using gentle rotation. Following binding, the protein- 
bound Calmodulin Sepharose beads were washed five times in buffer C (10 mM Tris- HCl, pH 8.0, 10% 
glycerol, 150 mM KCl, 2 mM CaCl2, 0.1% NP40, 1 mM DTT, supplemented with 20 µg/mL leupeptin, 
20 µg/mL pepstatin, 1 µg/mL benzamidine hydrochloride, and 100 µM PMSF). The bound proteins 
were eluted in buffer D 10 mM Tris- HCl, pH 8.0, 10% glycerol, 150 mM KCl, 2 mM EGTA, 0.1% NP40, 
0.5 mM DTT, supplemented with 20 µg/mL leupeptin, 20 µg/mL pepstatin, 1 µg/mL benzamidine 
hydrochloride, and 100 µM PMSF. The protein complexes were resolved by SDS- PAGE and visualized 
by silver staining.

Chromatin immunoprecipitation of SWI/SNF
For ChIP of the SWI/SNF complex, we constructed strains in which the SNF2 gene was tagged at the 
C- terminus with a TAP tag, as above. 1.25 × 108 cells were collected for each mutant and condition 
and fixed on 1% formaldehyde for 20 min to crosslink proteins to chromatin, and then the reaction was 
stopped with 136 mM glycine. Cells were pelleted and frozen in liquid nitrogen. Cells were then resus-
pended in 400 µL lysis buffer (0.1% deoxycholic acid, 1 mM EDTA, 50 mM HEPES pH 7.5, 140 mM 
NaCl, 1% Triton X- 100, and 5 mM phenanthroline), mixed with 400 µL glass beads, and then lysed by 
vortexing for 15 min. The same lysis buffer was used to rinse the glass beads once more to recover 
remaining lysate. Lysates were then sonicated for 10 s, six times in ice to sheer chromatin, and then 
incubated with 40 µL of IgG- conjugated magnetic beads per sample (1 × 108 beads) and incubated 
for 24 hr at 4°C on a nutator (Dynabeads m- 270 epoxy [Thermo Fisher 14301] conjugated to IgG from 
rabbit serum [Sigma- Aldrich I5006]; for conjugation protocol, see here).

After binding, samples were washed once with 600 µL buffer 2 (0.1 % deoxycholic acid, 1 mM 
EDTA, 50 mM HEPES pH 7.5, 500 mM NaCl, 1% Triton X- 100, and 5 mM phenanthroline) and then 
washed once with 600 µL buffer 3 (0.5% deoxycholic acid, 1 mM EDTA, 250 mM LiCl, 0.5% NP- 50, 
10 mM Tris pH 7.9, and 5 mM phenanthroline), and finally washed once with 600 µL buffer TE.

The crosslinking between DNA and proteins was reversed by heating in elution buffer (50 mM 
Tris- HCl pH 7.5, 10 mM EDTA, and 1% SDS) for 2 hr at 42°C and then for 8 hr at 65°C. Eluted DNA 
was purified using QIAGEN kit (28104) according to the manufacturer’s instructions.

qPCR was performed using a Roche LightCycler 480 SYBR green master mix (04707516001) 
following the manufacturer’s instructions.

Two sets of primers were used to amplify for ADH2 (Parua et al., 2014):

1F: ACC ATC CAC TTC ACG AGA CTG A, 1R:AAA AGT CGC TAC TGG CAC TC
2F: GAG TGC CAG TAG CGA CTT TTT, 2R: ACT TGC CGT TGG ATT CGT AG

Data fitting
Fluorescence intensity from the PADH2- mCherry reporter and ratiometric fluorescence measurements 
from pHluorin were fit with a single or double Gaussian curve for statistical analysis using MATLAB 
(MathWorks). The choice of a single or double Gaussian fit was determined by assessing which fit gave 

https://doi.org/10.7554/eLife.70344
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the least residuals. For simplicity, the height (mode) of each Gaussian peak was used to determine the 
fraction of cells in each population rather than the area because peaks overlapped in many conditions.

Sequence analysis of QLCs
Identification of QLCs
QLCs were defined as subregions of the proteome that have an average fraction of glutamine resi-
dues of 25% or higher (minimum fraction), the maximum interruption between any two glutamine 
residues is less than 17 residues, and the whole QLC is at least 15 residues in length (minimum length) 
(Figure  1—figure supplement 2A). All XLCs (low- complexity subssequences for all amino acids, 
including glutamine) are provided online for further exploration and analysis (see GitHub). Secondly, 
systematic variation of the maximum interruption size to ask how the number of QLCs and number 
of residues found revealed that 17 residues was the value that maximized the number of QLCs and 
the number of residues found within QLCs, offering an optimally permissive value under the 0.25 or 
greater fraction of glutamine threshold.

Computation of per-residue conservation
Per- residue conservation was calculated by taking orthologous fungal proteins from the yeast genome 
order browser, aligning those using Clustal Omega, and calculating the Jensen–Shannon divergence 
as implemented by Caprah and Singh using the BLOSUM62 matrix (Byrne and Wolfe, 2005; Capra 
and Singh, 2007; Henikoff and Henikoff, 1992; Lin, 1991; Sievers et al., 2011).

Proteome-wide analysis
S. cerevisiae, Dictyostelium, Drosophila, and human proteins were obtained from UniProt. Sequence 
analysis was performed with SHEPHARD (https://shephard.readthedocs.io/). Predicted disorder 
scores, IDR identification, and predicted pLDDT scores were performed by metapredict (Emenecker 
et al., 2021; ). QLCs and full proteomes are provided at here.

Proteome-wide per-residue enrichment or depletion in QLCs
To compute the enrichment or depletion of specific amino acid residues in QLCs, we determined the 
fraction of non- glutamine residues in QLCs compared to the fraction of non- glutamine residues across 
the entire proteome. Specifically, for each proteome (S. cerevisiae, D. discoideum, D. melanogaster, 
and Homo sapiens) we first computed the proteome- wide background by taking the complete set 
of all protein sequences, removing all glutamine residues from all proteins, and then computing the 
fraction of the proteome made up of the remaining 19 amino acids. For each proteome, we then iden-
tified the full set of QLCs and repeated the analysis. The log2 of the ratio of the fraction of each amino 
acid in a QLC vs. across the proteome was used to compute enrichment or depletion for different 
amino acids within QLCs.

Proteome-wide per-residue enrichment or depletion of QLCs with respect to 
all XLCs
To compute enrichment of different amino acids in QLCs compared to other low- complexity domains 
(XLCs), we repeated the analysis above using XLCs defined by enrichment for non- glutamine residues, 
and then re- computed non- glutamine enrichment as was done for the whole proteome. The complete 
set of all XLC subsequences for all four proteomes is provided.

Nucleosome remodeling assays
SWI/SNF purification
SWI/SNF complexes were purified from yeast strains with a TAP protocol as previously described 
(Smith and Peterson, 2005). Cells were grown in YPAD media and harvested at OD600 = 3, and 
flash frozen and stored at –80°C. Yeast cells were lysed using a cryomill (PM100 Retsch). Ground cell 
powder was resuspended in E buffer (20 mM HEPES, 350 mM NaCl, 0.1% Tween- 20, 10% glycerol, pH 
7.5), with fresh 1 mM DTT and protease inhibitors (0.1 mg/mL phenylmethylsulfonyl fluoride, 2 µg/mL 
leupeptin, 2 µg/mL pepstatin, 1 mM benzamidine) and incubated on ice for 30 min. The crude lysate 
was clarified first by centrifugation 3K rpm for 15 min, and then 40K rpm for 60 min at 4°C. The clear 
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lysate was transferred to a 250 mL Falcon tube and incubated with 400 µL IgG resin slurry (washed 
previously with E buffer without protease inhibitors) for 2 hr at 4°C. The resin was washed extensively 
with E buffer and protease inhibitors, and the protein- bound resin was incubated with 300 units TEV 
protease overnight at 4°C. The eluent was collected, incubated with 400 µL calmodulin affinity resin, 
washed previously with E buffer with fresh protease inhibitors, DTT and 2 mM CaCl2, for 2 hr at 4°C. 
Resin washed with the same buffer and SWI/SNF was eluted with E buffer with protease inhibitors, 
DTT, and 10 mM EGTA. The eluent was dialyzed in E buffer with PMSF, DTT, and 50 µM ZnCl2 at least 
three times. The dialyzed protein was concentrated with a Vivaspin column, aliquoted, flash frozen, 
and kept at –80°C. SWI/SNF concentration was quantified by electrophoresis on 10% SDS- PAGE gel 
alongside a BSA standard titration, followed by SYPRO Ruby (Thermo Fisher Scientific) staining over-
night and using ImageQuant 1D gel analysis.

Mononucleosome reconstitutions
Recombinant octamers were reconstructed from isolated histones as described previously (Luger 
et  al., 1999). In summary, recombinant human H2A (K125C), H2B, and H3 histones and Xenopus 
laevis H4 were isolated from Escherichia coli (Rosetta 2 [DE3] with and without pLysS). In order to 
label human H2A, a cysteine mutation was introduced at residue K125 via site- directed mutagenesis, 
which was labeled with Cy5 fluorophore attached to maleimide group (Zhou and Narlikar, 2016). 
DNA fragments were generated from 601 nucleosome positioning sequence and 2x Gal4 recognition 
sites with primers purchased from IDT. For FRET experiments, PCR amplification of labeled DNA 
fragments was as follows: 500 nM Cy3 labeled (5′- Cy3/ TCCC CAGT CACG ACGT TGTAAAAC-3′) and 
unlabeled primers (5′-  ACCA TGAT TACG CCAA GCTTCGG-3′), 200 µM dNTPs, 0.1 ng/µL p159- 2xGal4 
plasmid kindly donated by Blaine Bartholomew, 0.02 U/µL NEB Phusion DNA polymerase, 1× Phusion 
High Fidelity Buffer. For ATPase assays, two unlabeled primers used (PrimerW: 5′-  GTAC CCGG GGAT 
CCTC TAGAGTG-3′, PrimerS: 5′-  GATC CTAA TGAC CAAG GAAAGCA-3′) under same PCR conditions 
with NEB Taq DNA Polymerase with 1× NEB ThermoPol Buffer. 400 nM fluorescently labeled and 
unlabeled mononucleosomes were reconstituted via salt gradient at 4°C with a peristaltic pump as 
described previously (Luger et al., 1999), with 600 mL high salt buffer (10 mM Tris- HCl, pH 7.4, 1 mM 
EDTA, 2 M KCl, 1 mM DTT) exchanged with 3 L of low salt buffer (10 mM Tris- HCl, pH 7.4, 1 mM 
EDTA, 50 mM KCl, 1 mM DTT) over 20 hr. The quality of the nucleosomes was checked by visualizing 
proteins on a 5% native- PAGE gel and scanning fluorescence ratios of labeled nucleosomes on an ISS 
PC1 spectrofluorometer.

FRET-based nucleosome remodeling
The fluorescence resonance energy transfer between Cy3- labeled DNA and Cy5- labeled octamer 
was used to measure the remodeling and recruitment activity of SWI/SNF using an ISS PC1 spectro-
fluorometer. The remodeling activity was measured by the increase in FRET signal in that occurred as 
a consequence of nucleosome sliding the DNA template. The reaction was performed under three 
different pH conditions: pH 6.5 (25 mM MES, 0.2 mM EDTA, 5 mM MgCl2, 70 mM KCl, 1 mM DTT), 
pH 7 (25 mM Tris, 0.2 mM EDTA, 5 mM MgCl2, 70 mM KCl, 1 mM DTT), and pH 7.6 (25 mM HEPES, 
0.2 mM EDTA, 5 mM MgCl2, 70 mM KCl, 1 mM DTT). Remodeling reactions contained 2 nM or 4 nM 
(WT or mutant) SWI/SNF, 5 nM nucleosome, and 100 µM ATP or AMP- PNP. A 100 s pre- scan of the 
reaction was taken before the reaction started and the time- dependent fluorescence measurements 
started after addition of ATP or AMP- PNP for 1000s at room temperature. Similarly, recruitment assays 
were performed in three different buffer conditions: pH 6.5, pH 7, and pH 7.6. The recruitment assays 
contained 2 nM or 4 nM (WT or mutant) SWI/SNF, 5 nM nucleosome, 4 nM competitor DNA, 100 µM 
Gal4–VP16 (Protein One, P1019- 02) and 100 µM ATP or AMP- PNP, together with respective controls 
(Sen et al., 2017). 100 s of pre- scans and 1000s of time- dependent enzyme kinetics were measured. 
At least 2–4 kinetic traces were collected per reaction. Data were normalized to their respective pre- 
scans to account for variation between reactions. The time- dependent FRET signals were excited 
at 530 nm and measured at 670 nm. The data analysis was performed using the OriginLab software 
package.

https://doi.org/10.7554/eLife.70344
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ATPase activity measurements
7- Diethylamino- 3-[N- (2- maleimidoethyl)- carbamoyl]-coumarin- conjugated phosphate binding protein 
A197C (MDCC- PBP) (Brune et al., 1994) was used to detect inorganic phosphate (Pi) release from 
ATPase activity in real time. Before the reaction, ATP was cleared of free Pi by performing a mopping 
reaction. In order to mop the ATP, 10 mM ATP was incubated with 1 U/mL PNPase (Sigma, N2415- 
100UN) and 200 µM 7- methylguanosine (Sigma, M0627- 100MG) in mopping buffer (25 mM HEPES, 
75 mM NaCl, 5 mM MgCl2, 1 mM DTT) for 2 hr at room temperature. ATPase assay reaction conditions 
were 2 nM SWI/SNF, 5 nM nucleosome, and 100 µM ATP in respective pH buffers; pH 6.5 (25 mM 
MES, 0.2 mM EDTA, 5 mM MgCl2, 70 mM KCl, 1 mM DTT), pH 7 (25 mM Tris, 0.2 mM EDTA, 5 mM 
MgCl2, 70 mM KCl, 1 mM DTT), or pH 7.6 (25 mM HEPES, 0.2 mM EDTA, 5 mM MgCl2, 70 mM KCl, 
1 mM DTT). The measurements were performed on a Tecan Infinite 1000, with excitation at 405 nm 
and emission at 460 nm. Pre- scan measurements were taken to detect the basal level of signal per 
reaction. The time- dependent measurements were taken after starting the reaction by ATP addition. 
At least 3–4 kinetic traces were analyzed using the steady- state equation using GraphPad Prism 8 
software.

All-atom simulations
All- atom simulations were run with the ABSINTH implicit solvent model and CAMPARI Monte Carlo 
simulation (V2.0; http://campari.sourceforge.net/; Vitalis and Pappu, 2009). The combination of 
ABSINTH and CAMPARI has been used to examine the conformational behavior of disordered proteins 
with good agreement to experiment (Cubuk et al., 2020; Fuertes et al., 2017; Martin et al., 2020).

All simulations were started from randomly generated nonoverlapping random- coil conformations, 
with each independent simulations using a unique starting structure. Monte Carlo simulations perturb 
and evolve the system via a series of moves that alter backbone and sidechain dihedral angles, as 
well as rigid- body coordinates of both protein sequences and explicit ions. Simulation analysis was 
performed using CAMPARITraj (http://www.ctraj.com/) and MDTraj (McGibbon et al., 2015).

ABSINTH simulations were performed with the ion parameters derived by Mao et al. and using the  
abs_ opls_ 3. 4. prm parameters (Mao et al., 2010). All simulations were run at 15 mM NaCl and 325 
K, a simulation temperature previously shown to be a good proxy for bona fide ambient tempera-
ture (Das et al., 2016; Martin et al., 2020). A summary of the simulation input details is provided 
in Supplementary file 5. For SNF571- 120 simulations, 20 independent simulations were run for each 
combination of pH (as defined by histidine protonation state) and mutational state. For SNF5195- 223, the 
high glutamine content made conformational sampling challenging, as has been observed in previous 
glutamine- rich systems, reflecting the tendency for polyglutamine to undergo intramolecular chain 
collapse (Crick et al., 2006; Newcombe et al., 2018; Warner et al., 2017). To address this challenge, 
we ran hundreds of short simulations (with a longer equilibration period than in SNF71- 120) that are 
guaranteed to be uncorrelated due to their complete independence (Vitalis and Caflisch, 2010). 
Simulation code and details can be found at https://github.com/holehouse-lab/supportingdata/tree/ 
master/2021/Gutierrez_QLC_2021.

Bioinformatic analysis
All protein sequence analyses were performed with localCIDER, with FASTA files read by protfasta 
(https://github.com/holehouse-lab/protfasta; Holehouse et al., 2017; Holehouse, 2021). Sequence 
alignments were performed using Clustal Omega (Sievers et al., 2011). Sequence conservation was 
computed using default properties in with the score_conservation program as defined by Capra and 
Singh, 2007. Proteomes were downloaded from UniProt Consortium, 2015.

Low- complexity sequences were identified using Wootton- Federhen complexity (Ginell and Hole-
house, 2020; Wootton and Federhen, 1993). Sequence complexity is calculated over a sliding 
window size of 15 residues, and a threshold of 0.6 was used for binary classification of a residue 
as ‘low’ or ‘high’ complexity. After an initial sweep, gaps of up to three ‘high- complexity residues’ 
between regions of low- complexity residues were converted to low- complexity. Finally, contiguous 
stretches of 30 residues or longer were taken as the complete set of low- complexity regions in the 
proteome. The full set of those SEG- defined LCDs for human, Drosophila, Dictyostelium, and Cerevi-
siae proteomes is provided as FASTA files available here.

https://doi.org/10.7554/eLife.70344
http://campari.sourceforge.net/
http://www.ctraj.com/
https://github.com/holehouse-lab/supportingdata/tree/master/2021/Gutierrez_QLC_2021
https://github.com/holehouse-lab/supportingdata/tree/master/2021/Gutierrez_QLC_2021
https://github.com/holehouse-lab/protfasta
https://github.com/holehouse-lab/supportingdata/tree/master/2021/Gutierrez_QLC_2021/


 Research article      Biochemistry and Chemical Biology | Chromosomes and Gene Expression

Gutierrez et al. eLife 2022;11:e70344. DOI: https://doi.org/10.7554/eLife.70344  26 of 32

Acknowledgements
We thank Conor Howard for help with initial bioinformatics and conception of this project and 
Morgan Delarue for help with MATLAB analysis. We thank David Truong, Sudarshan Pinglay, and 
JoAnna Klein for help in writing the manuscript; Ivan Tarride for help with figure design; and 
Karsten Weis, Jeremy Thorner, and Douglas Koshland for advice, strains, plasmids, and reagents. 
We thank Cindy Hernandez for help with growth curves. We gratefully acknowledge funding from 
the William Bowes Fellows program, the Vilcek Foundation, the HHMI HCIA summer institute, 
NIH R01 GM132447 and R37 CA240765, the American Cancer Society Cornelia T Bailey Founda-
tion Research Scholar Grant, RSG- 19- 073- 01- TBE, and the Pershing Square Sohn Cancer Research 
Award (LJH); Becas Chile (JIG); and the National Science Foundation Graduate Research Fellows 
Program (GB).

Additional information

Funding

Funder Grant reference number Author

Becas Chile J Ignacio Gutierrez

National Science 
Foundation

Graduate Research Fellows 
Program

Gregory P Brittingham

Pershing Square Sohn 
Cancer Research Award

Liam J Holt

National Cancer Institute R37 CA240765 Liam J Holt

National Institute of 
General Medical Sciences

R01 GM132447 Liam J Holt

American Cancer Society 
Cornelia T. Bailey 
Foundation Research 
Scholar Grant

RSG-19-073-01-TBE Liam J Holt

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
J Ignacio Gutierrez, Conceptualization, Formal analysis, Investigation, Methodology, Writing – original 
draft, Writing – review and editing; Gregory P Brittingham, Conceptualization, Data curation, Formal 
analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – review and editing; 
Yonca Karadeniz, Kathleen D Tran, Formal analysis, Investigation, Methodology; Arnob Dutta, Formal 
analysis, Investigation, Methodology, Writing – review and editing; Alex S Holehouse, Conceptualiza-
tion, Formal analysis, Investigation, Methodology, Resources, Software, Visualization, Writing – review 
and editing; Craig L Peterson, Conceptualization, Formal analysis, Funding acquisition, Investigation, 
Supervision, Writing – review and editing; Liam J Holt, Conceptualization, Funding acquisition, Inves-
tigation, Methodology, Project administration, Visualization, Writing – original draft, Writing – review 
and editing

Author ORCIDs
J Ignacio Gutierrez    http://orcid.org/0000-0002-9017-8384
Yonca Karadeniz    http://orcid.org/0000-0002-8299-551X
Alex S Holehouse    http://orcid.org/0000-0002-4155-5729
Liam J Holt    http://orcid.org/0000-0002-4002-0861

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.70344.sa1
Author response https://doi.org/10.7554/eLife.70344.sa2

https://doi.org/10.7554/eLife.70344
http://orcid.org/0000-0002-9017-8384
http://orcid.org/0000-0002-8299-551X
http://orcid.org/0000-0002-4155-5729
http://orcid.org/0000-0002-4002-0861
https://doi.org/10.7554/eLife.70344.sa1
https://doi.org/10.7554/eLife.70344.sa2


 Research article      Biochemistry and Chemical Biology | Chromosomes and Gene Expression

Gutierrez et al. eLife 2022;11:e70344. DOI: https://doi.org/10.7554/eLife.70344  27 of 32

Additional files
Supplementary files
•  Supplementary file 1. Sequences of glutamine- rich low- complexity sequences (QLCs) in the 
Saccharomyces cerevisiae genome. All S. cerevisiae QLCs identified using the parameters optimized 
in Figure 1—figure supplement 2 are included in this summary table.

•  Supplementary file 2. Comparison of sequence properties of SNF5 N- terminal intrinsically 
disordered regions (IDRs). Comparison of the IDRs of SNF5 orthologues from Ascomycete fungi, 
with the number of glutamines and histidines indicated.

•  Supplementary file 3. Transcription factors enriched in each gene group from RNA- seq analysis. 
The YEASTRACT server used to find transcription factors enriched within the promoters of each 
of four gene sets defined by hierarchical clustering of genes significantly regulated upon carbon 
starvation (see Figure 4E). YEASTRACT search settings were DNA binding plus expression evidence; 
TF acting as either activator or inhibitor.

•  Supplementary file 4. SNF5 subregions examined by all- atom Monte Carlo simulations.

•  Supplementary file 5. Parameters used for all- atom Monte Carlo simulations.

•  Supplementary file 6. Yeast strains used in this study.

•  Supplementary file 7. Plasmids used in this study.

•  Transparent reporting form 

Data availability
Simulation code and details can be found at: https://github.com/holehouse-lab/supportingdata/ 
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Author(s) Year Dataset title Dataset URL Database and Identifier

Gutierrez JI 2021 Simulation code and details https:// github. com/ 
holehouse- lab/ 
supportingdata/ 
tree/ master/ 2021/ 
Gutierrez_ QLC_ 2021

GitHub, GitHub

Brittingham GP 2021 RNA- seq R- code https:// github. com/ 
gbritt/ SWI_ SNF_ pH_ 
Sensor_ RNASeq

GitHub, GitHub

Brittingham GP, Holt 
LJ, Gutierrez JI

2021 SWI/SNF senses carbon 
starvation with a pH- 
sensitive low complexity 
sequence

https://www. ncbi. 
nlm. nih. gov/ geo/ 
query/ acc. cgi? acc= 
GSE174687

NCBI Gene Expression 
Omnibus, GSE174687
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