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SUMMARY

The SWR1C chromatin remodeling enzyme catalyzes ATP-dependent replacement of nucleosomal 

H2A with the H2A.Z variant, regulating key DNA-mediated processes such as transcription and 

DNA repair. Here, we investigate the transient kinetic mechanism of the histone exchange 

reaction, employing ensemble FRET, fluorescence correlation spectroscopy (FCS), and the steady-

state kinetics of ATP hydrolysis. Our studies indicate that SWR1C modulates nucleosome 

dynamics on both the millisecond and microsecond timescales, poising the nucleosome for the 

dimer exchange reaction. The transient kinetic analysis of the remodeling reaction performed 

under single turnover conditions unraveled a striking asymmetry in the ATP-dependent 

replacement of nucleosomal dimers, promoted by localized DNA unwrapping. Taken together, our 

transient kinetic studies identify intermediates and provide crucial insights into the SWR1C-

catalyzed dimer exchange reaction and shed light on how the mechanics of H2A.Z deposition 

might contribute to transcriptional regulation in vivo.

In Brief

The SWR1C remodeling enzyme catalyzes ATP-dependent replacement of nucleosomal H2A with 

the H2A.Z variant at promoter-proximal nucleosomes. Singh et al. investigate the transient kinetic 
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mechanism of this histone exchange reaction and show that SWR1C transiently unwraps 

nucleosomal DNA, promoting a concerted dimer eviction and replacement reaction.

Graphical Abstract

INTRODUCTION

Eukaryotic genomes are assembled into long, linear arrays of nucleosomes that each consist 

of an octamer of core histones around which ~147 bp of DNA is wrapped nearly two times. 

The histone octamer is composed of a central hetero-tetramer of histones H3 and H4 flanked 

by two heterodimers of histones H2A and H2B. Within the nucleosome, the H3/H4 tetramer 

wraps the central ~90 bp of nucleosomal DNA, whereas each H2A-H2B dimer organizes 

and stabilizes the final few turns (Luger et al., 1997). In vivo, nucleosomal arrays are highly 

heterogeneous. Nucleosomes are precisely positioned around regulatory regions such as 

gene promoters or replication origins, different genomic regions harbor histones with a 

variety of posttranslational modifications, and the canonical core histones can be replaced 

with a number of conserved histone variants (Yuan et al., 2005; Raisner et al., 2005; Jiang 

and Pugh, 2009; Venkatesh and Workman, 2015). These complex chromatin structures are 

often highly dynamic and can provide epigenetic information that regulates gene expression, 

replication timing, and other key nuclear processes (Swygert and Peterson, 2014; Henikoff, 

2016)

Transcription in a eukaryotic cell can be regulated by the structure and dynamics of 

nucleosomes located immediately upstream and downstream of the transcription start site 

(TSS) (Cairns, 2009; Dion et al., 2007). These promoter-proximal nucleosomes flank a 

nucleosome-depleted region (NDR) of ~200 bp and are highly enriched for the conserved 

histone variant H2A.Z (Hartley and Madhani, 2009; Barski et al., 2007). The H2A.Z variant 

is an evolutionarily conserved variant of H2A whose incorporation into a nucleosome 

modulates its dynamics and promotes intramolecular folding of nucleosomal arrays (Fan et 
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al., 2002; Park et al., 2004). In budding yeast, H2A.Z is enriched in the promoter regions of 

both active and inactive genes, and H2A.Z is known to play a key role in promoting the 

proper kinetics of transcriptional activation (Santisteban et al., 2000; Raisner et al., 2005). In 

addition, yeast H2A.Z is enriched within nucleosomes that flank replication origins as well 

as at the boundaries of heterochromatic regions, where it mediates an anti-silencing effect by 

preventing the ectopic spread of heterochromatin (Albert et al., 2007; Meneghini et al., 

2003). Likewise, in higher metazoans, H2A.Z is enriched at pericentric heterochromatic 

regions during the early stages of embryonic development (Banaszynski et al., 2010). In 

addition to its critical role in transcription, H2A.Z has been intimately linked with DNA 

repair pathways and the regulation of cell cycle checkpoints, hallmarks of genome integrity 

(Adkins et al., 2013; Xu et al., 2012; Gévry et al., 2007). Not surprisingly, yeast cells 

lacking H2A.Z show temperature-sensitive growth defects and are sensitive to various 

genotoxic agents (Santisteban et al., 2000). Moreover, loss of H2A.Z in the frog and mouse 

causes embryonic lethality (Faast et al., 2001).

Unlike canonical histones, which are primarily assembled by a replication-dependent 

mechanism, H2A.Z is deposited at precise nucleosomal positions in an ATP-dependent 

reaction by enzymes related to the yeast SWR1C chromatin remodeling enzyme (Kobor et 

al., 2004; Mizuguchi et al., 2004). There are four subfamilies of chromatin remodeling 

enzymes—SWI-SNF, CHD, ISWI, and INO80—that are evolutionarily conserved from 

yeast to humans (Clapier et al., 2017). Many chromatin remodelers are enormous multi-

subunit enzymes that each contain a related catalytic subunit that harbors a bi-lobular, RecA-

like ATPase domain. SWR1C and its mammalian paralogs SRCAP and p400/Tip60 are 

members of the INO80C subfamily, and they use the energy of ATP hydrolysis to catalyze a 

histone exchange event where each of the two nucleosomal H2A-H2B dimers is sequentially 

replaced with H2A.Z-H2B variant dimers (Ruhl et al., 2006; Luk et al., 2010). Unlike all 

other chromatin remodelers that can use their ATP-dependent, DNA translocase activity to 

“slide” nucleosomes along DNA in cis, SWR1C can deposit H2A.Z without altering 

nucleosome positions (Clapier et al., 2017; Bowman 2010; Ranjan et al., 2015). To 

specifically direct the deposition of H2A.Z at promoter-proximal nucleosomes, SWR1C is 

targeted to promoter regions by interactions with free DNA at the NDR, targeting the 

adjacent +1 and 1 nucleosomes (nucleosomes are numbered relative to the TSS) (Ranjan et 

al., 2013). Likewise, the mammalian SRCAP and p400/Tip60 enzymes are believed to be 

targeted to promoter regions by gene-specific regulators (Pradhan et al., 2016; Yildirim et 

al., 2011).

The biological function of proteins requires local and global conformational fluctuations that 

take place in the micro- to millisecond timescale (Henzler-Wildman and Kern, 2007). 

Nucleosomes can undergo spontaneous conformational fluctuations on the millisecond 

timescale that facilitate the transient accessibility of nucleosomal DNA to nuclear factors (Li 

and Widom 2004; Li et al., 2005). However, it remains unclear how remodeling enzymes 

such as SWR1C modulate the conformational dynamics of the nucleosome during an ATP-

dependent nucleosome remodeling reaction. Notably, the SWR1C-catalyzed dimer exchange 

reaction is complex, requiring fine-coupling of the energy of ATP hydrolysis to several 

microscopic events of the nucleosome remodeling reaction (Zhou et al., 2016). Therefore, 

this nucleosome remodeling cycle is expected to contain multiple intermediates that may 
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remain invisible in discontinuous and/or steady-state biochemical assays. Transient kinetic 

experiments are well suited to unravel the identity of reaction intermediates and microscopic 

rate constants associated with their production and decay and, hence, provide in-depth 

mechanistic analysis of an enzyme-catalyzed reaction (Jencks 1989; Fersht 1999).

Here we investigate the transient kinetic mechanism of the SWR1C-catalyzed dimer 

exchange reaction employing ensemble fluorescence resonance energy transfer (FRET), 

fluorescence correlation spectroscopy (FCS), and steady-state kinetics of ATP hydrolysis. 

We find that SWR1C utilizes an ATP-dependent modulation in nucleosome dynamics on the 

microsecond timescale as a strategy for discriminating the two structurally similar H2A and 

H2A.Z nucleosomes. In addition, our FRET studies indicate that free H2A.Z-H2B dimers 

function as essential co-substrates that stimulate SWR1C ATPase activity and promote 

unwrapping of DNA at the nucleosomal edge. This ATP-dependent unwrapping of 

nucleosomal DNA occurs on the same timescale as H2A-H2B eviction and replacement, 

suggesting that it is an obligatory step in the reaction. Finally, our transient kinetic studies 

uncover asymmetry in the H2A.Z deposition reaction, where a linker-distal dimer is replaced 

first, followed by the slower replacement of the linker-proximal dimer. The asymmetry of 

the H2A.Z deposition reaction suggests a regulatory role for gene transcription and provides 

insights into the molecular mechanism of ATP-dependent nucleosome remodeling catalyzed 

by other families of chromatin-remodeling enzymes.

RESULTS

Dynamic Nucleosome Fluctuations Specify a Substrate Competent for SWR1C Remodeling

To investigate the transient kinetic mechanism of the SWR1C-catalyzed histone dimer 

exchange, a fluorescence-based strategy was employed. End-positioned, recombinant yeast 

mononucleosomes were assembled on an ~200-bp fragment containing a “601” nucleosome 

positioning sequence (Figure 1A). The nucleosomal substrates were designed with 55–77 bp 

of flanking linker DNA so that it might reflect the asymmetry of a promoter-proximal 

nucleosome located next to a NDR. In most cases, mononucleosome substrates contain a 

Cy3 fluorophore covalently attached to the linker-distal end of the nucleosomal DNA, and 

Cy5 was attached to either the H2A C-terminal domain or the H3 N-terminal domain. The 

Cy3 and Cy5 fluorophores are within an appropriate distance to function as a FRET pair so 

that excitation of the Cy3 donor with a 530-nm light source leads to efficient energy transfer 

to the Cy5 acceptor, as evidenced by the fluorescence emission peak at 670 nm (Li and 

Widom, 2004; Figure S1).

Previous studies have demonstrated that nucleosomes undergo spontaneous unwrapping 

and/or rewrapping of nucleosomal DNA on the millisecond timescale (Li and Widom 2004; 

Li et al., 2005). To investigate the effect of SWR1C on this dynamic behavior, we 

investigated nucleosome dynamics utilizing FRET-FCS and a nucleosomal substrate that 

contains Cy3 on the linker-distal nucleosomal edge and Cy5 on the H2A C terminus (55N0; 

Figures 1A and 1B; Torres and Levitus, 2007). In this assay, the conformational fluctuations 

of the nucleosome are determined from the ratio of the auto-correlation and cross-correlation 

functions of the change in fluorescence intensity of the acceptor (Cy5) and donor-acceptor 

(Cy3-Cy5) pair (Figures 1C and 1D). Utilizing FRET-FCS, the observed rate constant (kobs) 
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for nucleosomal DNA unwrapping and/or rewrapping was determined to be ~7 s−1 (half-life 

= ~100 ms) (Figure 2A), slightly slower than values reported previously for a vertebrate 

nucleosome (~21 s−1) (Li et al., 2005). Likewise, the dynamics of an H2A.Z nucleosome 

were similar, with a kob of ~2.1 s−1 (half-life = 330 ms) (Figure 2D). Strikingly, binding of 

SWR1C to either an H2A or H2A.Z nucleosome increased the rate of DNA unwrapping 

and/or rewrapping by ~2 orders of magnitude compared with the unbound nucleosome (half-

life = 1 ms) (Figures 2B and 2E; Figure S2; Table S1). Furthermore, addition of AMP-PNP 

further altered the dynamics of the SWR1C-H2A nucleosome complex, yielding a markedly 

biphasic pattern (Figure 2C). The two phases had nearly equal amplitudes, and the kobs for 

the fast and slow phases were 40 s−1 (half-life = ~1 ms) and ~5 × 104 s−1 (half-life = ~14 

μs), respectively (Figure 2C; Figure S1; Table S1). We note that there may also be a fast 

component when SWR1C is bound to the H2A nucleosome in the absence of nucleotides, 

although, in this case, the amplitude is small and may not be significant (Table S1). 

Likewise, addition of AMP-PNP had no significant effect on the dynamics of an SWR1C-

H2AZ nucleosome complex (Figure 2F), suggesting that the enhanced microsecond 

dynamics are linked to substrate discrimination and that they may help SWR1C to select the 

appropriate nucleosomal conformation that can be funneled to the next step of the dimer 

exchange reaction.

H2A.Z-H2B Dimers Activate Dimer Eviction by SWR1C

One consequence of enhanced nucleosomal DNA wrapping/unwrapping might be the 

eviction or destabilization of H2AH2B dimers prior to their replacement with H2A.Z-H2B. 

To monitor eviction of H2A-H2B dimers, an H2A nucleosome was reconstituted that 

contained unlabeled nucleosomal DNA and a Cy3-Cy5 FRET pair located on the histone H3 

N terminus and the H2A C terminus, respectively (Figure S3A). To directly probe for 

changes in histone-histone interactions in real-time, we monitored changes in the 

nucleosomal FRET acceptor (Cy5) signal catalyzed by SWR1C under single-turnover 

conditions (excess enzyme to substrate). Notably, no changes in the FRET signal were 

observed during incubation with SWR1 and ATP, indicating that enhanced DNA 

unwrapping/wrapping dynamics are not sufficient for dimer eviction (Figure S3A).

Previous studies have demonstrated that H2A.Z-H2B dimers function as co-substrates in the 

SWR1C exchange reaction, stimulating ATPase activity and interacting with both the Swr1 

ATPase and the Swc2 subunit (Luk et al., 2010; Hong et al., 2014, Wu et al., 2005). 

Strikingly, addition of free H2A.Z-H2B dimers to the SWR1C remodeling reaction (H3-

Cy3/H2A-Cy5 FRET substrate) led to a robust, extensive loss of Cy5 signal from the 

nucleosomal FRET substrate in an ATP-dependent reaction, indicating that H2A.Z-H2B 

dimers are essential co-factors for H2A-H2B eviction (Figure S3A). Eviction of H2A-H2B 

dimers was also monitored with the nucleosomal FRET substrate containing a Cy3-labeled 

DNA terminus and Cy5-labeled histone H2A (55N0; Figure 3A). In this case as well, 

addition of both SWR1C and free H2A.Z-H2B dimers led to a dramatic, ATP-dependent 

decrease in the FRET signal, consistent with eviction of the Cy5-labeled H2A-H2B dimers 

(Figure 3B). Importantly, the ATP- and H2A.Z-H2B-dependent loss of the Cy5 signal was 

accompanied by a reciprocal increase in the Cy3 signal, consistent with a loss of FRET 

(Figure S3B). Notably, addition of free H2A-H2B dimers did not alter the Cy5 FRET signal, 
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nor did H2A.Z-H2B dimers promote dimer loss from an H2A.Z nucleosome, results fully 

consistent with proper substrate specificity (Figure S3C). In addition, the H2A.Z-H2B-

dependent loss of FRET was not observed on a substrate that contained a pair of 2-nt DNA 

gaps at nucleosomal superhelical location (SHL) ±2.0, indicating that an intact SHL2 is 

essential for dimer eviction, as predicted by an earlier study (Figure 3C; Ranjan et al., 2015).

SWR1C Induces Unwrapping of DNA at the Nucleosomal Edge

A wealth of data support the unifying view that chromatin remodeling enzymes perform 

their various functions by initiating an ATP-dependent DNA translocation event from a fixed 

point on the nucleosome surface, in most cases about two DNA helical turns from the 

nucleosomal dyad (SHL ±2.0) (Clapier et al., 2017). Indeed, SWR1C has been shown to 

make tight contact with nucleosomal DNA at SHL2.0, and single-strand DNA gaps near 

SHL2.0 block H2A.Z deposition in vitro, suggesting an essential role for DNA translocation 

by SWR1C (Ranjan et al., 2015). However, unlike other remodeling enzymes, prior assays 

have not observed stable alterations in nucleosome positioning because of the SWR1C 

remodeling reaction (Luk et al., 2010; Ranjan et al., 2015). One possibility is that SWR1C 

promotes only a limited amount of DNA translocation that could provide the initial trigger 

for dimer eviction.

In an initial attempt to directly probe for changes in DNA-histone interactions, the steady-

state conformation of a 77N0 nucleosome (H2A-Cy5) was monitored by a wavelength scan 

of SWR1C reactions containing SWR1C alone, SWR1C and AMP-PNP, or SWR1C and 

ATP (Figure 4A). Interestingly, addition of saturating amounts of SWR1C led to an increase 

in the Cy3 signal and an increase in the Cy5 FRET signal (likely because of the increase in 

Cy3), indicating that binding of SWR1C alters the solvent micro-environment of the 

nucleosomal edge. Interestingly, further incubation with either AMP-PNP or ATP did not 

lead to a significant change in either Cy3 or Cy5 emissions, indicating that binding and 

hydrolysis of ATP does not lead to stable changes in nucleosome structure that could be 

detected with this FRET pair.

To further investigate the potential for DNA translocation, FRET time courses were 

performed under single-turnover conditions (excess SWR1C to nucleosome) to probe for 

transient changes in histone-DNA interactions. A nucleosomal substrate was assembled that 

harbored the Cy5 fluorophore on the H3 N-terminal domain and Cy3 on a short, 3-bp distal 

linker (Figure 1A). The potential advantage of this substrate is that changes in DNA-histone 

interactions can be monitored even when the resident H2A-H2B dimer is replaced, unlike 

the case where Cy5 labels H2A. Furthermore, we anticipated that movement of DNA from 

the short linker toward the nucleosome edge might give rise to an ATP-dependent change in 

FRET. However, addition of ATP and SWR1C did not significantly alter the FRET signal 

(Figure 4B). Surprisingly, further addition of free H2A.Z-H2B dimers also did not change 

the FRET signal, even though the distal H2A-H2B dimer would be evicted during this time 

course (Figure 4B).

Under standard reaction conditions, the dimer eviction reaction has a half-life of ~2 min 

(Figure 3B), which may preclude detection of transient, small changes in FRET. To slow the 

rate of dimer exchange, the ATP concentration was reduced 100-fold so that the 
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concentration was ~10-fold below KM (Luk et al., 2010). At this lower ATP concentration, 

the initial rate of dimer eviction showed a half-life of ~6 min using the 77N0 substrate 

(H2A-Cy5) (Figure S4A). Surprisingly, even under these conditions, no significant changes 

in FRET could be detected when SWR1C and ATP were added to the H3-Cy5 substrate that 

reports on changes in DNA-histone interactions (77N3 substrate; Figures 1A and 4C). 

Strikingly, however, further addition of free H2A.Z-H2B dimers led to a transient decrease 

in FRET, followed by an increase (Figure 4C). Importantly, small changes in Cy5 emission 

observed after direct Cy5 excitation were not ATP-dependent, eliminating the possibility that 

changes were due to an altered solvent environment during the dimer exchange reaction 

(Figure 4D). In addition, this transient decrease in FRET was not observed for reactions 

containing AMP-PNP and H2A.Z-H2B dimers, demonstrating a requirement for ATP 

hydrolysis (Figure 4C). Importantly, the rate of FRET decrease was faster than the rate of 

dimer eviction under these low-ATP conditions (t1/2 = 2.1 min), consistent with an ATP-

dependent, on-pathway reaction (Figure 4C; Figure S4B). These results suggest that SWR1C 

promotes ATP-dependent unwrapping of DNA at the nucleosomal edge only in the presence 

of free H2A.Z-H2B dimers.

The SWR1C-Catalyzed Replacement of H2A-H2B Dimers Is Markedly Asymmetric

The kinetic trace of the dimer eviction reaction revealed a markedly biphasic reaction 

(Figure 3B). The experimental data were analyzed with a double-exponential rate equation, 

yielding values for the fast and slow kobs of 0.33 min−1 (half-life = 2.1 min) and 0.06 min−1 

(half-life = 12.3 min), respectively. In addition, the fast phase of the reaction was associated 

with an ~70% change of the FRET amplitude, whereas there was a smaller, ~30% amplitude 

associated with the slow phase. One possibility is that the two distinct kinetic phases reflect 

the sequential SWR1C-catalyzed eviction and replacement of each of the two H2A-H2B 

dimers under these single-turnover conditions. To further investigate this possibility, we 

measured the kinetics for ATP-dependent deposition of H2A.Z-H2B. For monitoring H2A.Z 

deposition, the nucleosomal substrate contained a Cy3 fluorophore on the nucleosomal DNA 

edge, and the free H2A.Z-H2B dimer contained the Cy5 label on the H2A.Z C terminus 

(Figure 5A). SWR1C reactions were initiated under single-turnover conditions, and the 

kinetic trace shows an ATP-dependent increase in the FRET signal, consistent with H2A.Z 

deposition (Figure 5B). Importantly, the kinetic profile for H2A.Z deposition was also 

clearly biphasic, yielding kobs for the fast and slow phases of 0.32 min–1 (half-life = 2.2 

min.) and 0.04 min−1 (half-life = 16.6 min), respectively. Notably, the values of these kobs 

for H2A.Z-H2B deposition are quantitatively similar to those of the fast and slow kobs 

measured for the eviction of H2A-H2B (Figure 3B). Taken together, the remarkable 

similarity in the biphasic kinetic profiles suggests that SWR1C catalyzes sequential 

exchange of two H2A-H2B dimers in a real-time assay performed under single-turnover 

conditions.

The biphasic kinetics of dimer eviction and deposition may reflect asymmetry in the 

catalytic cycle so that the first round of dimer exchange occurs preferentially on one face of 

the nucleosome with a rate that is ~6-fold faster than exchange of the second dimer. To 

address this question, FRET mononucleosomes were reconstituted that contained single, 2-

nt gaps in nucleosomal DNA at either the linker-proximal (SHL−2.0) or linker-distal (SHL
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+2.0) regions (Figures 3D, 3E, 5D, and 5E). These substrates were used in dimer eviction or 

dimer deposition reactions performed under single-turnover conditions with SWR1C, 

H2A.Z-H2B dimers, and ATP. Notably, the ATP-dependent kinetic profiles for these gapped 

substrates were monophasic, in sharp contrast to the mononucleosomes with intact 

nucleosomal DNA. For instance, when the 2-nt gap was located at linker-distal SHL+2.0, 

only a slow phase (kobs = 0.06 min−1) of FRET loss was observed in the dimer eviction 

assay, and the change in FRET amplitude was small (Figure 3D). Likewise, only a slow 

phase of H2A.Z deposition was observed in the FRET deposition assay (Figure 5D). In 

contrast, when the gap was located at the linker-proximal SHL−2.0, only a fast phase (kobs = 

0.12 min−1) of FRET loss or deposition remained (Figure 3E and 5E). Furthermore, this fast 

phase was associated with a much larger drop or gain in FRET amplitude (~70%) compared 

with the slow phase, indicating that the fast phase reflects removal and replacement of the 

dimer closest to the distal, Cy3-labeled DNA. Together, these results indicate that SWR1C 

preferentially evicts and replaces the H2A-H2B dimer located at the linker-distal half of the 

nucleosome, followed by a slower reaction where the linker-proximal H2A-H2B dimer is 

replaced.

The 601 nucleosome positioning sequence is inherently asymmetric, containing a set of 

periodic TpA (TA) dinucleotide steps that is more prevalent on one side of the dyad 

compared with the opposite side. This asymmetry is known to affect the unwrapping 

properties of nucleosomal DNA as well as to regulate the efficiency of nucleosome 

repositioning by the Chd1 remodeling enzyme (Ngo et al., 2015; Winger and Bowman, 

2017). One possibility is that the asymmetry of the 601 sequence is responsible for the 

biphasic kinetics of dimer exchange. In our substrates, the TA-rich side of the 601 sequence, 

which stabilizes DNA wrapped on the nucleosome, is positioned on the linker-distal side of 

the nucleosome, where the first, rapid round of dimer exchange occurs (77N0 substrate). We 

assembled a “flipped” 0N77 FRET substrate that places the TA-rich side of the 601 adjacent 

to the long linker. The rates of dimer exchange were tested in parallel for both the 770N and 

077N FRET substrates, which harbor H2A-Cy5 and DNA labeled with Cy3 at the distal 

DNA end. As shown in Figure 6A, the dimer exchange reaction remained biphasic with both 

substrates, and the rate of the first, rapid phase of the reaction was identical between 

substrates. However, the second round of dimer exchange was slower with the 0N77 

substrate. These results indicate that the asymmetry in the 601 sequence does not affect the 

overall asymmetry of the SWR1C-catalyzed dimer exchange reaction, but the DNA 

sequence does have a significant effect on the rate of the second round of dimer exchange.

Biphasic kinetics indicate that the two rounds of dimer exchange occur at different rates. 

One possibility is that the first round of exchange is faster because linker DNA not only 

orients the enzyme to initially attack the linker-distal dimer but that it also stimulates the 

reaction. Alternatively, the second round of dimer exchange may simply be an inherently 

slower reaction. To test these possibilities, we reconstituted a centrally positioned, 257-bp 

nucleosome that harbors a Cy3/Cy5 FRET pair on the histone H3 N-terminal and H2A C-

terminal domains, respectively (Figure 6B). If asymmetric linker DNA is responsible for 

biphasic kinetics, then the centrally positioned nucleosome should show a monophasic 

profile, whereas biphasic kinetics should still be observed if the second round is inherently 

slow. Strikingly, the centrally positioned nucleosome showed clear biphasic kinetics of 
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dimer eviction, with rates similar to those observed for the end-positioned substrate (Figure 

5B; t1/2 fast = 0.6 min, t1/2 slow = 9.4 min). Thus, having a long linker DNA on one end of a 

positioned nucleosome, as observed for the +1 nucleosome at promoter regions, functions 

primarily to orient the enzyme so that the linker-distal dimer is displaced first. The second 

round of dimer exchange appears to be an inherently slower reaction, perhaps because the 

H2A.Z/H2A heterotypic intermediate is a poor substrate.

SWR1C-Nucleosome Interactions Couple ATPase Activity to Dimer Eviction

Remodeling enzymes couple the energy of ATP hydrolysis to translocation of DNA, and, in 

many cases, gaps at SHL2.0 block remodeling activities (Figure 3 and 5; Ranjan et al., 

2015). Previous studies have shown that the basal ATPase activity of SWR1C is stimulated 

by both the nucleosomal substrate and the H2A.Z-H2B co-substrate (Figure S5A; Luk et al., 

2010). To probe the effect of intact nucleosomal DNA on the chemo-mechanical coupling of 

SWR1C ATPase activity, steady-state ATPase assays were performed with a nucleosomal 

substrate that contains 2-nt gaps at both SHL+2.0 and SHL2.0 (Figures S5B and S5C). 

Strikingly, the gapped nucleosome was unable to stimulate the ATPase activity of SWR1C 

(Figure S5B). Thus, the stimulation of SWR1C ATPase activity by nucleosomes reflects 

efficient coupling of ATP hydrolysis to productive interactions with DNA. In sharp contrast, 

gaps in nucleosomal DNA did not diminish the effect of H2AZ-H2B but led to a further, 

~1.5× increase in the steady-state rate (Figure S5B). Thus, on a gapped nucleosome, the 

H2AZ-H2B dimers stimulate the rate of hydrolysis, reflecting apparent uncoupling of ATP 

hydrolysis from its effects on nucleosomal DNA. The effect of the gap appears to be similar 

to the ATPase cycle of AAA+ chaperones, which undergo rapid hydrolysis of ATP upon 

encountering a very stable substrate that is resistant to ATP-dependent unfolding (Sauer and 

Baker, 2011).

DISCUSSION

SWR1C is unique among remodeling enzymes because it cannot mobilize nucleosomes in 
cis, but, rather, it is dedicated to the ATP-dependent replacement of nucleosomal H2A with 

its variant, H2A.Z (Clapier et al., 2017). In contrast to previous studies of ATP-dependent 

nucleosome sliding reactions, we found that the dimer exchange reaction is kinetically slow, 

likely because the reaction has to transit multiple activation or transition state barriers during 

the catalytic cycle (Hammes, 2002). Furthermore, the coordination of several different 

microscopic events associated with each round of dimer exchange—DNA unwrapping, 

H2A-H2B eviction, and H2A.Z-H2B deposition—is likely to yield a large number of kinetic 

intermediates. Here we probed for such steps using several biophysical approaches, 

including the use of single-turnover reaction conditions in which excess enzyme 

synchronizes the system at the beginning of the reaction cycle and it remains synchronous 

until the substrate completes one reaction cycle.

Our transient kinetic investigation supports a complex reaction pathway involving at least 

five distinct intermediates (Figure 7). In step 1, binding of SWR1C to an end-positioned, 

asymmetric nucleosome yields a SWR1C-nucleosome complex that has an ~100-fold 

enhanced rate of DNA wrapping/unwrapping. Nucleosome recognition also appears to 
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anchor the Swr1 ATPase to nucleosomal DNA, enhancing the affinity for ATP and coupling 

subsequent ATP hydrolysis to DNA manipulations. In step 2, binding of ATP leads to 

additional enhancement of nucleosome dynamics on the microsecond timescale that are 

unique to an H2A nucleosomal substrate. In step 3, free H2A.Z-H2B dimers act as a power 

stroke, promoting ATP hydrolysis and unwrapping of DNA at the nucleosomal edge. In step 

4, the preceding power stroke drives the initial eviction of the linker-distal H2A-H2B dimer 

and replacement by H2A.Z-H2B in an apparently concerted reaction. In step 5, the second, 

linkerproximal dimer is sequentially replaced during the single-turnover reaction cycle with 

kinetics at least 6-fold slower than the first replacement event. These slower kinetics may be 

due to an inherent difficulty in remodeling the H2A/H2A.Z heterotypic intermediate, a 

possibility that can be tested in the future by assembly of oriented hexosomes, as described 

by Qiu et al. (2017). Below, we discuss in greater detail the mechanistic implications for this 

reaction series.

Conformational Fluctuations of the Nucleosome during the Dimer 

Exchange Reaction

Macromolecules undergo spontaneous conformational fluctuations, leading to ensembles of 

multiple, distinct conformations (Henzler-Wildman and Kern, 2007). Notably, biophysical 

studies have shown that such “wiggling and giggling” in proteins or enzymes is 

indispensable for their function and that these dynamics often affect enzyme-substrate 

specificity and are kinetically coupled with their catalytic turnover rate (Feynman and Sands, 

1963; Agarwal et al., 2002; Henzler-Wildman et al., 2007). The nucleosome is known to 

undergo spontaneous conformational fluctuations on the millisecond timescale, manifested 

in the unwrapping and rewrapping of nucleosomal DNA (Li and Widom 2004; Tims et al., 

2011). Additional conformational fluctuations are also likely to involve the entire 

nucleosome (Henzler-Wildman and Kern, 2007), including the histone octamer, and such 

dynamics are expected to influence remodeling reactions.

We found that the binding of SWR1C to a canonical H2A nucleosome is characterized by an 

~100-fold increase in the rate of nucleosome conformational fluctuations on the millisecond 

timescale. Faster unwrapping and/or rewrapping kinetics of the nucleosomal DNA end are 

likely to facilitate the eviction of H2A-H2B dimers because the dimers are tightly held 

within the nucleosome via a strong electrostatic interaction with the last 3 superhelical turns 

(SHL±3.5–6.5) of nucleosomal DNA (Luger et al., 1997). Additionally, these 

conformational fluctuations may also promote the generation of early intermediates of the 

dimer exchange reaction by reducing the activation energy barrier for approaching the 

transition state (Daniel et al., 2003; Nashine et al., 2010). This viewpoint is strengthened by 

our observation that ATP binding induces additional nucleosomal fluctuations on the 

microsecond timescale, changes that are not observed when SWR1C is bound to the 

remodeling product, the H2A.Z nucleosome. Such a stark difference in the conformational 

fluctuations between an H2A and H2A.Z nucleosome underscores the idea that kinetic 

coupling of nucleosomal conformational fluctuations may be critical for progression of the 

ATP-dependent dimer exchange reaction cycle (Eisenmesser et al., 2002). Notably, a similar 

effect of ATP binding on SWR1C-induced nucleosome fluctuations has recently been 
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described in a single-molecule FRET approach (Willhoft et al., 2018). We also envision that 

ATP-dependent nucleosome dynamics may facilitate the ability of SWR1C to search for an 

appropriate conformation of nucleosomes to be funneled into the catalytic cycle 

(Vendruscolo and Dobson 2006). Notably, the catalytic efficiency of an enzyme is often 

linked with the kinetics of a conformational search of both the enzyme and its cognate 

substrate (Benkovic and Hammes-Schiffer 2003). Thus, in this view, the ATP-bound 

SWR1C-H2A.Z-nucleosome complex may be kinetically trapped at the beginning of the 

catalytic cycle.

Nucleosome Recognition by INO80C and SWR1C

Recently, studies have reported cryoelectron microscopy (cryo-EM) reconstructions of the 

yeast and human INO80C remodeling enzymes bound to an end-positioned nucleosome 

(Eustermann et al., 2018; Ayala et al., 2018), as well as a cryo-EM structure of nucleosome-

bound SWR1C (Willhoft et al., 2018). INO80C is highly related to SWR1C, having a 

similar subunit module organization and sharing several subunits, such as the Rvb1/Rvb2 

heterohexomeric ring assembly (Watanabe et al., 2015). Remarkably, INO80C and SWR1C 

use similar but distinct strategies to engage an end-positioned nucleosome (one side contains 

a long DNA linker). First, both enzymes bind the nucleosome within a large cleft between 

two lobes; one lobe contains the ATPase domain, and the second lobe contains a group of 

key subunits. In the case of INO80C, the two lobes interact along nearly an entire gyre of 

nucleosomal DNA on the linker-proximal side of the nucleosome, with the ATPase lobes of 

the Ino80 subunit making tight contact with DNA at the linker-proximal SHL-6 region and 

the Ies2/Ies6/Arp5 subunit module interacting with DNA at SHL-2 (Eustermann et al., 

2018). These interactions position INO80C to initiate DNA translocation from the 

nucleosomal edge proximal to the long linker, pulling the linker DNA into the nucleosome, 

toward the subunit module bound at SHL-2.0, eventually leading to re-positioning of the 

nucleosome toward the center of the DNA fragment.

Strikingly, SWR1C has a similar interaction with the nucleosome, but, in this case, the two 

large lobes interact with the opposite gyre of nucleosomal DNA, and their orientation is 

switched; the Swr1 ATPase lobes interact with SHL+2.0, and the Swc2/Arp6/Swc6/Swc3 

module interacts with SHL+6.0 (Willhoft et al., 2018). This orientation positions SWR1C so 

that translocation occurs from the more canonical SHL2 position, pulling DNA toward the 

nucleosomal dyad from the linker-distal DNA end. These interactions are fully consistent 

with prior hydroxyl radical footprinting studies for both INO80C and SWR1C (Brahma et 

al., 2017; Ranjan et al., 2015). Both enzymes also interact with the exposed long DNA 

linker, and for INO80C, this appears to be due to an Actin-Arp subunit module (Act1/Arp4/

Arp8 for INO80C). Interactions with linker DNA may help to recruit or orient SWR1C, or 

such contacts may prevent propagation of the DNA translocation event so that nucleosome 

positions are unchanged (Clapier et al., 2017).

Remarkably, binding of INO80C to the nucleosome releases ~15 bp of DNA from the 

histone octamer surface where the ATPase lobes interact at SHL-6 (Eustermann et al., 2018; 

Ayala et al., 2018). Likewise, cryo-EM analysis of the SWR1C-nucleosome complex 

indicates that nucleosome binding by SWR1C disrupts histone-DNA contacts at the linker-
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distal nucleosome edge (SHL+6), with two subunits (Swc6 and Arp6) serving as a wedge 

that may help to displace DNA from the octamer surface (Willhoft et al., 2018). Importantly, 

this SWR1C-nucleosome complex was formed in the presence of both H2A.Z-H2B dimers 

and ADP-BeF3, a putative ground-state nucleotide analog; thus, the structure may reflect a 

“snapshot” of the transient, unwrapped state we measured in ensemble FRET time courses.

Does DNA Translocation Promote Histone Replacement?

In the SWI2-SNF2 ATPase, DNA-stimulated ATPase activity has been attributed to a DNA-

mediated rearrangement of the ATPase lobes that orients catalytic residues for ATP 

hydrolysis (Durr et al., 2005). Likewise, recent cryo-EM structures of Chd1-nucleosome and 

SWR1C-nucleosome complexes show that the two ATPase lobes of the remodeler undergo a 

well-pronounced structural change in the presence of a ADP-BeF3 (Farnung et al., 2017; 

Willhoft et al., 2018), inducing close interactions with the nucleosome at the SHL2 region. 

For SWR1C, binding of ADP-BeF3 appears to be sufficient for translocation of 1 bp of DNA 

toward the nucleosomal dyad (Willhoft et al., 2018). Interestingly, recent studies with the 

Chd1 remodeler also suggest that closure of the ATPase lobes is sufficient to induce a 1-bp 

translocation step (Winger et al., 2018). Consistent with this view, our studies demonstrate 

that the stimulation of ATP hydrolysis is eliminated by a 2-nt gap at SHL2, indicating that 

tracking of nucleosomal DNA is fine-tuned with the kinetic events of the ATPase cycle. 

Thus, intact nucleosomal DNA is likely to provide a macro-molecular context essential for 

optimum closure of the ATPase lobes upon ATP binding (Dürr et al., 2005; Farnung et al., 

2017). Based on our FCS-FRET studies and recently published single molecule FRET 

(smFRET) results, this ATP-bound form of the SWR1C-nucleosome complex also shows 

enhanced dynamics of DNA-histone interactions at the nucleosomal edge. For SWR1C, only 

single-stranded DNA (ssDNA) gaps within the binding site at SHL2 block dimer exchange 

(±17 bp to ±23 bp from the nucleosomal dyad) (Ranjan et al., 2015), suggesting that 

SWR1C may only need to translocate a few base pairs. We envision that such limited DNA 

translocation may destabilize DNA between SHL2 and the nucleosome edge at SHL6, 

facilitating exposure of the H2A-H2B surface for DNA unwrapping by the Swc6/Arp6 

wedge (Willhoft et al., 2018). In this model, our ensemble FRET assay measures the 

combined effects of DNA translocation and DNA unwrapping, resulting in transient loss of 

FRET concurrent with initial dimer eviction. Such a rapid but limited amount of DNA 

translocation may not only weaken histone-DNA contacts but also lead to allosteric changes 

in the histone octamer that destabilize the H2A-H2B and H3/H4 interface (Sinha et al., 

2017).

SWR1C Catalyzes an Asymmetric Dimer Exchange Reaction

Previous gel-based assays for H2A.Z deposition demonstrated that the dimer exchange 

reaction is a sequential (Luk et al., 2010), stepwise process when assayed under steady-state 

assay conditions. We were surprised, however, to find that our single-turnover exchange 

reactions were clearly biphasic, with the first phase occurring at a rate about ~6-fold faster 

than the second phase. Furthermore, 2-nt DNA gaps at either SHL+2.0 or SHL2.0 produced 

monophasic kinetic profiles that maintained either the fast or slow rates observed with intact 

nucleosomes. These data suggest the intriguing possibility that SWR1C catalyzes two 

sequential rounds of dimer exchange without a requisite dissociation from the nucleosome 
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substrate. Furthermore, the slower rate of the second phase suggests that the second round of 

dimer exchange has a different rate-limiting step or an altered reaction pathway.

How might SWR1C accomplish this feat? We envision that, following exchange of the first 

H2A-H2B dimer, SWR1C must re-orient its ATPase lobes to the opposite DNA gyre so that 

it can initiate a DNA translocation event that unwraps the long linker DNA end, promoting 

eviction of the linker-proximal dimer. Importantly, re-orientation of the lobes would not 

require dissociation of the entire enzyme from the nucleosome. Intriguingly, a recent study 

has suggested that the Chd1 remodeling enzyme may re-orient its ATPase lobes back and 

forth between SHL2 and SHL6 during ATP-dependent nucleosome mobilization (Qiu et al., 

2017). However, it seems unlikely that the SWR1C ATPase re-orients to SHL6 for the 

second round of dimer exchange because a gap at SHL2 blocks this second exchange 

reaction. More likely, there may be a more dramatic re-organization of the SWR1C ATPase 

lobes so that they engage SHL2 on the opposite DNA gyre. In this model, binding of the 

Actin-Arp module to the long linker DNA might stabilize the enzyme-nucleosome complex 

(Brahma et al., 2017; Eustermann et al., 2018; Ayala et al., 2018). Flexibility of the 

remodeler ATPase lobes for multiple, alternative interactions with nucleosomal DNA may be 

a hallmark of these enzymes.

From yeast to mammals, H2A.Z deposition appears to be targeted to the nucleosome 

adjacent to the start site for transcription by RNA polymerase II (Albert et al., 2007; Barski 

et al., 2007). Often termed the +1 nucleosome, it is inherently asymmetric, with one side 

flanked by an NDR of 140–250 bp and the other side by the +2 nucleosome, which can be 

separated from the +1 by less than 20 bp of linker DNA (Jiang and Pugh 2009). In yeast, 

targeting of SWR1C to the +1 nucleosome relies on protein-DNA interactions between 

SWR1C and the NDR region (Ranjan et al., 2013), whereas the related vertebrate enzymes, 

SRCAP and p400/Tip60, are believed to be recruited to promoter-proximal regions by gene-

specific regulators (Pradhan et al., 2016). Our in vitro nucleosome substrate mimics the 

asymmetry of the +1 nucleosome because it is flanked by a 55- to 77-bp linker. Previous 

DNA footprinting studies have shown that interactions between SWR1C and the long linker 

DNA appear to orient the ATPase lobes of the Swr1 catalytic subunit to interact with linker-

distal SHL+2.0 (Ranjan et al., 2015), and we found that this leads to the preferential eviction 

of the linker-distal H2A-H2B dimer in the initial, fast phase of the biphasic exchange 

reaction (Figure 3B). We note that a recent study did not observe such preferential exchange 

of the distal dimer, likely because of the fact that their nucleosomal substrate had relatively 

long linkers on both sides of the nucleosome (Willhoft et al., 2018).

Recent high-resolution ChIP-exo analyses of nucleosome asymmetry in yeast are fully 

consistent with asymmetric dimer exchange (Rhee et al., 2014). At the +1 nucleosome, the 

promoter-distal half of the nucleosome is highly enriched for H2A.Z, whereas the promoter-

proximal side is enriched for H2A. Interestingly, the promoter-proximal side is also enriched 

for ubiquitinylated H2B (H2B-ub), a mark associated with active transcription (Rhee et al., 

2014; Zhang 2003). One interesting possibility is that H2B-ub might enhance the intrinsic 

kinetic delay of the second round of dimer exchange, ensuring that the +1 nucleosome 

remains asymmetric with respect to H2A.Z deposition. In addition, our studies suggest that 

DNA sequence may also affect the rate of the second round of dimer exchange and, thus, 
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that asymmetric DNA sequences at promoter-proximal nucleosomes may also enhance the 

accumulation of H2A/H2A.Z heterotypic nucleosomes.

What might be the functional significance of dimer exchange asymmetry? We consider two 

possibilities that would be consistent with the known role of H2A.Z in promoting rapid 

induction of transcription from a poised promoter (Guillemette et al., 2005). First, there may 

be unique biochemical properties for a heterotypic H2A.Z/H2A nucleosome, especially 

when the H2A-H2B dimer contains a mono-ubiquitin mark. H2B-ub can disrupt 

nucleosome-nucleosome interactions in vitro (Fierz et al., 2011), and together with H2A.Z, 

this combination may favor subsequent nucleosome disruption during transcription 

initiation. Alternatively, the kinetic lag between the first and second rounds of dimer 

exchange may lead to an accumulation of a remodeling intermediate where SWR1C 

enhances the wrapping/unwrapping dynamics of nucleosomal DNA on the NDR-proximal 

side. In yeast, the NDR proximal side of the nucleosome often contains the site of 

transcription initiation (Jiang and Pugh 2009), and, thus, a mechanism that specifically 

enhances accessibility to this face of the nucleosome would be particularly advantageous.

STAR⋆METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Craig Peterson (Craig.Peterson@umassmed.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial Strains—E.coli strains Rosetta(DE3)pLysS (Novagen) and Rosetta 2 (Novagen) 

were used for histone expression. Cells were grown in standard LB media at 37°C.

Yeast Strains—Strain W1588–4C (MATa ade2–1 can1–100 his3–11,15 leu2–3,112 trp1–1 
ura3–1 RAD5+ swr1::SWR1–3xFLAG-P-KanMX-P htz1::natMX4) was used for 

purification of SWR1C. Yeast were grown in YEPD media, supplemented with adenine, at 

30°C until an OD600 of 3–6.

METHOD DETAILS

Reconstitution of fluorescently labeled mononucleosomes—Recombinant 

Saccharomyces cerevisiae (H2A, H2A.Z, H2B, H3, and H4) and Xenopus laevis or human 

histones (H3 and H4) were expressed in Escherichia coli (Rosetta 2(DE3)pLysS for all 

histones, except for histone H4 which used Rosetta 2) and purified from inclusion bodies as 

described previously (Luger et al., 1999). The unique cysteine substitutions were introduced 

at H2A-119 and H3–33 using site-directed mutagenesis. Histones were labeled with Cy5 and 

Cy3 using maleimide chemistry and reconstituted into dimers and octamers as described 

previously (Zhou and Narlikar, 2016; Luger et al., 1999). The purified, concentrated dimer 

and octamer stocks were diluted 1:1 with freeze buffer (10 mM Tris-HCl, pH = 7.4, 2 M 

NaCl, 40% glycerol, 5 mM β-Mercaptoethanol), aliquoted, flash frozen, and stored at −80°C 

for nucleosome reconstitution and dimer exchange assays. Cy3-labeled DNA fragments 

containing an end-positioned 601 nucleosome positioning sequence or unlabeled, center-
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positioned 601 DNA fragments were prepared by PCR amplification using 500nM of 

5′Cy3-conjugated or unlabeled PCR primers purchased from IDT, 0.1 ng/ul pGEM-601 

plasmid, 200 uM dNTPs, and either 0.02 U/ul Phusion DNA polymerase in 1× Phusion High 

Fidelity Buffer or 0.025 U/ul Taq DNA polymerase in 1× ThermoPol Buffer under the 

recommended conditions from NEB (Phusion: https://www.neb.com/protocols/1/01/01/pcr-

protocol-m0530; ThermoPol Taq: https://www.neb.com/protocols/1/01/01/taq-dna-

polymerase-with-thermopol-buffer-m0267). The PCR products were purified using a Zymo 

DNA Clean & Concentrator kit and concentrated by ethanol precipitation. Fluorescent 

mononucleosomes were reconstituted at 300–600 nM concentration via salt gradient dialysis 

(Luger et al., 1999), dialyzing in 600 mL of high buffer (10 mM Tris-HCl, pH = 7.4, 1 mM 

EDTA, 2M KCl, 1 mM DTT), exchanged with 3 L of low buffer (10 mM Tris-HCl, pH = 

7.4, 1 mM EDTA, 50 mM KCl, 1 mM DTT) over 20 hr at 4°C using a peristaltic pump. For 

each set of reconstitutions, at least three different ratios of histone octamer to DNA template, 

close to 1:1 were assembled, visualized on a 4.5% native-PAGE gel via SYBR Gold 

(Thermo Fisher Scientific) staining or Cy3/Cy5 fluorescence using a Typhoon Imager (GE), 

and the reconstitution that yielded 1%–5% free DNA was chosen for subsequent reactions. 

The gapped mononucleosomes were reconstituted using the 202 bp DNA fragment 

containing the end-positioned 601 positioning sequence harboring 2nt gap at the SHL ± 2 

region. The gapped DNA fragment was generated by PCR amplification using primers that 

contain deoxyuridine bases at the specific gap sites. In order to create a gap in the above 

PCR product, it was treated with USER enzyme – a mixture of DNA glycosylase and 

endonuclease III. The complete removal of deoxyuridine from the PCR product by USER 

enzyme was confirmed upon its treatment with S1 nuclease.

Purification of yeast SWR1C—SWR1C was purified from whole cell extracts of a S. 

cerevisiae strain harboring a FLAG-tagged allele of the Swr1 ATPase (Swr1–3xFLAG) as 

detailed elsewhere (Mizuguchi et al., 2012) with the following modifications: A PM 100 

cryomill was used to lyse the harvested yeast noodles with 6 × 1 min cycles at 400 rpm. 

During affinity purification of SWR1C, the MNase digestion step was skipped. Following 

FLAG peptide elution, SWR1C was either aliquoted, flash frozen, and stored in B-0.1 buffer 

(25 mM HEPES, pH = 7.6, 1 mM EDTA, 2 mM MgCl2, 10 mM β-glycerophosphate, 1 mM 

Na-butyrate, 0.5 mM NaF, 100 mM KCl, 10% glycerol, 0.05% Tween-20) with 0.5 mg/mL 

FLAG peptide at −80°C for future use, or further purified on a 5 ml, 5%–30% glycerol 

gradient in buffer D (25 mM HEPES, pH = 7.6, 1 mM EDTA, 2 mM MgCl2, 100 mM KCl). 

Gradients were sedimented for 14 hours at 35,000 rpm, collected in 200 ul fractions, and 

imaged by SDS-PAGE and silver staining. Peak fractions of SWR1C were pooled, 

concentrated using a 10 kDa cutoff Amicon Ultra-0.5 mL centrifugal filter (Millipore), and 

dialyzed overnight against storage buffer (25 mM HEPES, pH = 7.6, 1 mM EDTA, 2 mM 

MgCl2, 100 mM KCl, and 10% glycerol). Concentrated SWR1C was aliquoted, flash frozen, 

and stored at −80°C. SWR1C concentration was determined by SDS-PAGE using a BSA 

(NEB) standard titration, followed by SYPRO Ruby (Thermo Fisher Scientific) staining and 

quantification using ImageQuant 1D gel analysis.

Nucleosome dynamics measurements using fluorescence correlation 
spectroscopy (FCS)—FCS measurements were carried out using an in-house automated 

Singh et al. Page 15

Cell Rep. Author manuscript; available in PMC 2019 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.neb.com/protocols/1/01/01/pcr-protocol-m0530
https://www.neb.com/protocols/1/01/01/pcr-protocol-m0530
https://www.neb.com/protocols/1/01/01/taq-dna-polymerase-with-thermopol-buffer-m0267
https://www.neb.com/protocols/1/01/01/taq-dna-polymerase-with-thermopol-buffer-m0267


FCS set up. Excitation was provided by a 488 nm single-mode fiber coupled picosecond 

diode laser (BDL-488-SMN, Becker & Hickl GmBH) that was expanded to overfill the 

microscope objective. The excitation was focused on the sample and collected by an 

Olympus UPlanSApo 60× 1.2 N.A. water immersion objective. The collected light was 

focused on a 50-micron pinhole and then further collimated and split into a donor (Cy3) and 

acceptor (Cy5) channel using a dichroic beamsplitter. Additional bandpass filters were 

placed before the detectors. Single-photon avalanche photodiodes (SPAD) (ID100–50, low-

noise, ID Quantique, Switzerland) were used for detection. The output of the SPADs were 

inverted and directed into a time-correlated single-photon counting card (SPC150, Becker & 

Hickl GmBH). Samples were placed in 170-micron glass coverslip bottom 96-well 

microplates (Greiner Bio-One). Autofocusing and fully automated data collection were 

enabled by a custom computer-controlled, microplate-compatible x-y-z stage. A Microlab 

titrator (Microlab 500, Hamilton Company) automatically added immersion water to the 

objective prior to each acquisition. Each FCS trace was the result of 10 × 300 s collections. 

FCS experiments were performed using 10 nM nucleosome bearing the FRET donor-

acceptor pair in remodeling buffer (25 mM HEPES, pH = 7.6, 0.2 mM EDTA, 5 mM 

MgCl2, 70 mM KCl, 1 mM DTT). SWR1C was dialyzed overnight against the remodeling 

buffer prior to use in the FCS experiments. The FCS measurements of the nucleosome in the 

presence SWR1C and ATP analog AMP-PNP were performed under saturating enzyme and 

nucleotide concentrations. The acceptor autocorrelation function (GAA) and the donor/

acceptor cross-correlation function (GDA) were determined using the Burst Analyzer 

software package. Since the relaxation time of the conformational fluctuation (observed rate 

constant, kobs) of the nucleosome can be derived from the ratio of any two correlation 

functions (Tims et al., 2011; Torres and Levitus, 2007), we utilized the values of GDA/GAA 

to obtain the kinetic parameters associated with conformational fluctuation of the 

nucleosome under various experimental conditions. The characteristic exponential curves 

associated with the ratio of two correlation functions (GDA/GAA) were analyzed using a 

single/double exponential rate equation, yielding the kobs values of the conformational 

fluctuation of the nucleosome.

Transient kinetic measurements of nucleosome remodeling—The transient 

kinetic experiments of the SWR1C-catalyzed nucleosome remodeling reaction were carried 

out under single turnover conditions (excess SWR1C over nucleosome). Nucleosomes were 

assembled either with a yeast histone octamer or a yeast/X. laevis/human hybrid octamer 

where the histone H3/H4 tetramer contained X. laevis H4 and human H3.2. Hybrid 

nucleosomes were only used for assays that employed an H3-Cy5 label, as this labeling 

position differentially de-stabilized the yeast octamer. Notably, the biphasic rates of dimer 

eviction were identical between yeast and hybrid substrates (Figure S4C). The time-

dependent fluorescence measurements during the SWR1C-catalyzed nucleosome reaction as 

well as pre-and post-reaction emission spectral scans were carried out using an ISS PC1 

spectrofluorometer or a Tecan Infinite M1000 PRO microplate reader. The nucleosome 

remodeling reactions were performed in remodeling buffer (25 mM HEPES, pH = 7.6, 0.2 

mM EDTA, 5 mM MgCl2, 70 mM KCl, 1 mM DTT) at room temperature. A representative 

nucleosome remodeling reaction contained 50–100 ul of 10 nM nucleosome (bearing FRET 

pair), at least 2.5-fold excess of SWR1C, and 200 uM-1 mM ATP or AMP-AMP. In order to 
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monitor dimer exchange, a two- to seven-fold excess concentration of H2A.Z-H2B dimer 

relative to the nucleosome was used. The nucleosome was incubated with SWR1C in the 

presence or absence of the H2A.Z-H2B dimer for 5 min at room temperature to synchronize/

pre-equilibrate the nucleosome-remodeler complex. The remodeling reaction was started 

with the addition of ATP or AMP-PNP. In the no enzyme controls, equivalent volume of 

SWR1C elution buffer containing 0.5 mg/mL FLAG peptide was added instead. At least 2–4 

kinetic traces were collected for each dataset and averaged to enhance the signal to noise 

ratio. The transient kinetic parameters of the SWR1C-catalyzed nucleosome reaction were 

obtained from the time-dependent change in the Cy5 FRET signal at 670nm upon 530nm 

excitation. The averaged kinetic traces associated with the nucleosome remodeling reaction 

were analyzed using single and double exponential rate equations as described below 

yielding the kobs values associated with the respective remodeling reaction.

RFU = Ae−kobs . t + offset

RFU = A1e−kobs1.t + A2e−kobs2.t + offset

In the above equations, RFU is relative fluorescence signal, A is the associated amplitude of 

the fluorescence signal, kobs is the observed rate constant, t is the time, and the offset is the 

end point of the fluorescence signal. All curve fittings were performed in the OriginLab 

software package and the standard error associated with the parameters obtained upon fitting 

have been reported.

ATPase ASSAYS—The real-time and direct measurement of inorganic phosphate (Pi) was 

performed using a phosphate sensor, which is 7-Diethylamino-3-[N-(2-

maleimidoethyl)carbamoyl]coumarin conjugated to phosphate-binding protein A197C (PBP-

MDCC) (Brune et al., 1994). Precise measurements of the pre-steady state kinetic 

parameters of SWR1C-catalyzed ATP hydrolysis were unsuccessful even at reduced 

temperature (4°C) and lower concentration of ATP, which were used to slow down the 

ATPase activity (for reliable rate measurements) and reduce the amount of free phosphate 

ion present in the ATP solution, respectively. In view of the above experimental limitation, 

we performed the steady-state kinetic analysis of the SWR1C-catalyzed ATP hydrolysis by 

discarding data points from the initial 300 s. The experimental conditions used in the 

ATPase assay were as follows: [SWR1C] = 5 nM, [ATP] = 100 μM, [H2A-nucleosome] = 10 

μM, [PBP-MDCC] = 2 μM, [H2A.Z-H2B dimer] = 20 nM. The real-time monitoring of Pi 

produced during the SWR1C-catalyzed reaction was performed on ISS PC1 

spectrofluorometer upon exciting the sample at 425 nm and monitoring emission at 460 nm. 

At least 3–4 kinetic traces were averaged and analyzed using the steady-state equation as 

described below (Fersht, 1999),

V0 = kcat/Km[E][S]
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where V0 is the rate of ATP hydrolysis by SWR1C, kcat is the rate constant of hydrolysis, 

Km is the Michaelis constant, [E] is the concentration of SWR1C, and [S] is the 

concentration of ATP. The amount of Pi produced during the steady-state of SWR1C-

catalyzed ATP hydrolysis was calculated using the linear standard curve of Pi.

QUANTIFICATION AND STATISTICAL ANALYSES

At least 10–15 FCS traces were collected, and the Cy3 and Cy5 photon counts signal were 

auto and cross-correlated in 300 s cycles using Burst Analyzer. The correlation curves were 

averaged and fitted with the single and double exponential rate equation as described below. 

Non-linear regression analysis was performed using Origin Software package to obtain the 

line of best fit. The standard error associated with the parameters and the reduced Chi-square 
derived upon curve fitting were used as to measure the precision of fitted value.

In order to enhance the robustness of the quantitative measurement in the nucleosome 

remodeling reactions, the random noise was reduced by averaging at least 3–4 kinetic traces. 

The averaged traces were analyzed using single and double exponential rate equations as 

described below yielding the kobs values associated with the respective remodeling reaction.

RFU = Ae−kobs . t + offset

RFU = A1e−kobs1.t + A2e−kobs2.t + offset

In the above equations, RFU is relative fluorescence signal, A is the associated amplitude of 

the fluorescence signal, kobs is the observed rate constant, t is the time, and the offset is the 

end point of the fluorescence signal. All curve fittings were performed in the OriginLab 

software package and, the precision of the fitted parameters was evaluated using the 

associated standard error and the Reduced Chi-square values.
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Highlights

• SWR1C catalyzes two cycles of H2A.Z deposition by a biphasic, asymmetric 

reaction

• Binding of SWR1C enhances nucleosome dynamics

• Initial eviction of an H2A-H2B dimer involves ATP-dependent histone-DNA 

unwrapping

• Nucleosomal DNA sequence can modulate the rate of H2A.Z exchange
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Figure 1. Conformational Fluctuations of the Nucleosome by FRET-FCS
(A) Nucleosomal FRET substrates. Red stars denote the location of the Cy3 donor, and blue 

stars denote the position of the Cy5 acceptor.

(B) Experimental setup for FCS-FRET using the H2A-Cy5/DNA-Cy3 substrate. A 

femtoliter volume of nucleosome solution is excited by a laser at the donor excitation 

wavelength. Fluctuations in donor and acceptor fluorescence signals are due to two events: 

(1) diffusion in and out of the confocal volume and (2) nucleosome conformational 

fluctuations that are dictated by the intrinsic microscopic rate constants (k+1 and k−1), 

causing a distance change between the donor-acceptor pair (right image).

(C) The autocorrelation and cross-correlation functions of the acceptor and the donor-

acceptor pair of the same nucleosome as a function of time are shown ascyan and black 

traces, respectively.

(D) The ratio of the two correlation functions as a function of time. The observed rate 

constant (kobs) of the conformational fluctuation is obtained from the exponential fit of the 

ratio curve of these two correlation functions.
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Figure 2. SWR1C Modulates the Conformational Fluctuations of the Nucleosome
(A–F) The ratios of donor-acceptor cross-correlation to acceptor auto-correlation are plotted 

as a function of time under various experimental conditions. The experimental data were 

analyzed using either a single- or double-exponential rate equation, yielding the values of 

the kobs (t1/2 = 0.693/kobs) for the conformational fluctuation of the nucleosome.

(A) Dynamics of an H2A-nucleosome.

(B) The dynamics of the SWR1C-H2A nucleosome complex are 2 orders of magnitude 

faster than the free nucleosome.

(C) Addition of AMP-PNP (a non-hydrolyzable analog of ATP) to the SWR1C-nucleosome 

complex induces additional nucleosome dynamics on the microsecond timescale.

(D) Dynamics of the H2A.Z nucleosome.

(E) The dynamics of the SWR1C-H2A.Z nucleosome complex are 2 orders of magnitude 

faster than the free nucleosome.

(F) Addition of AMP-PNP to the SWR1C-H2A.Z nucleosome does not alter nucleosome 

dynamics.

FCS curves were obtained after averaging at least 20–25 autocorrelation/cross-correlation 

curves.
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Figure 3. Transient Kinetics of ATP-Dependent Eviction of Two H2A-H2B Dimers from an H2A 
Nucleosome Are Asymmetric
(A) Experimental strategy for monitoring the rate of eviction of nucleosomal H2A-H2B. The 

nucleosomal substrate contains a Cy3-labeled DNA end, and Cy5 is located on the H2A C 

terminus. Cy5 FRET signals were monitored over time in reactions that contained free 

H2A.Z-H2B dimers.

(B) Representative kinetic trace for SWR1C-catalyzed eviction of H2A-H2B dimers from an 

H2A nucleosome. The experimental data were analyzed using adouble-exponential rate 

equation, yielding the kobs for the fast and slow phases as 0.33 ± 0.02 min−1 (half-life = 2.1 

min) and 0.06 ± 0.01 min−1(half-life = 12.3 min), respectively.

(C) The kinetic trace for SWR1C-catalyzed eviction of H2A-H2B dimers from an H2A 

nucleosome containing a 2-nt gap at both SHL+2.0 and SHL−2.0.

(D) The kinetic trace for SWR1C-catalyzed eviction of the H2A-H2B dimer from an H2A 

nucleosome harboring a 2-nt gap at the linker-distal SHL+2.0. The monophasic trace was 

analyzed using a single-exponential rate equation, yielding the kobs as 0.06 ± 0.01 min
−1(half-life = 12 min).

(E) The kinetic trace for SWR1C-catalyzed eviction of the H2A-H2B dimer from an H2A 

nucleosome harboring a 2-nt gap at the linker-proximal SHL−2.0. The kinetic trace is 

monophasic; hence, it was analyzed using a single-exponential rate equation, yielding the 

observed rate as 0.12 ± 0.03min−1 (half-life = 6 min). At least 3–4 kinetic traces were 

collected for each experimental condition, and they were averaged. The resultant kinetic 

traces were analyzed using an exponential rate equation, and the error in the measurement 

represents the standard error of the parameter derived from non-linear regression analysis 

using the Origin software package (OriginLab).
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Figure 4. SWR1C Catalyzes ATP-Dependent Unwrapping of Nucleosomal DNA during Dimer 
Exchange
(A) The emission spectra under Cy3 excitation at 530 nm of 77N0-Cy3 H2A-Cy5 

nucleosomes incubated with ATP (black), SWR1C (red), SWR1C and ATP (green), or 

SWR1C and AMP-PNP (blue).

(B) Normalized Cy5 FRET trace of 77N3-Cy3 H3-Cy5 nucleosomes incubated under 

saturating nucleotide concentrations with ATP (black); SWR1C and ATP (red); SWR1C and 

AMP-PNP (blue); or SWR1C, H2A.Z-H2B dimers, and ATP (green).

(C) Normalized Cy5 FRET trace of 77N3-Cy3 H3-Cy5 nucleosomes bound to SWR1C 

under low nucleotide concentrations with H2A.Z-H2B dimers and ATP (black), dimers and 

AMP-PNP (red), or no dimers and ATP (green).

(D) Normalized Cy5 signal under direct excitation at 650 nm showing no ATP-dependent 

change in the Cy5 environment for 77N3-Cy3 H3-Cy5 nucleosomes during SWR1C dimer 

exchange with low ATP concentration (black) compared with AMP-PNP (red).

The emission spectra in (A) were taken after 35 min of incubation, except for the reaction 

with the nucleosome and SWR1C, which was adjusted for photobleaching using the spectra 

from the nucleosome and ATP reaction pre- and post-incubation. Spectra were collected in 

triplicates. FRET reaction time course traces were collected in at least duplicates, averaged, 

and fit to a linear regression or single-exponential decay model. The y-intercept of each fit 

was normalized to 1.
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Figure 5. Transient Kinetics of ATP-Dependent Deposition of Two H2A.Z-H2B Dimers Is 
Asymmetric
(A) Experimental strategy for monitoring the rate of deposition of H2A.Z-H2B. The 

nucleosomal substrate contains only the Cy3-labeled DNA end, and Cy5 islocated on the 

free H2A.Z-H2B dimer (H2A.Z-C125-Cy5).

(B) Kinetic trace for the SWR1C-catalyzed deposition of the H2A.Z-H2B dimer to the intact 

H2A nucleosome. The biphasic trace was analyzed using a double-exponential rate equation, 

yielding the kobs for the fast and slow phases as 0.31 ± 0.01 min−1 (half-life = 2.2 min) and 

0.04 ± 0.01 min−1(half-life = 16.6 min), respectively.

(C) Reactions as in (B), but the nucleosome contained 2-nt gaps at both SHL+2.0 and SHL

−2.0.

(D) Same as in (B), but the reactions contained a nucleosome with a 2-nt gap at the linker-

distal SHL+2.0. The monophasic trace was analyzed using a single-exponential rate 

equation, yielding the kobs as 0.04 ± 0.01min−1(half-life = 16 min).

(E) Reactions as in (B), but the nucleosome harbors a 2-nt gap at the linker-proximal SHL

−2.0. The monophasic trace was analyzed using a single-exponential rate equation, yielding 

the observed rate as 0.14 ± 0.02 min−1(half-life = 5 min).

At least 3–4 kinetic traces were collected for each experimental condition, and they were 

averaged. The resultant kinetic traces were analyzed using an exponential rate equation, and 

the error in the measurement represents the standard error of the parameter derived from 

non-linear regression analysis using the Origin software package (OriginLab).
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Figure 6. Nucleosome Determinants of Asymmetric Dimer Exchange
(A) Normalized Cy5 FRET signal comparing theSWR1C-dependent kinetics of H2A-Cy5 

eviction from nucleosomes with the linker on the TA-poor (black) or TA-rich side (red) of 

the 601 nucleosome position sequence.

(B) Normalized Cy5 FRET signal showing biphasic kinetics of H2A-H2B dimer eviction 

from center-positioned 55N78 H3-Cy3 H2A-Cy5 nucleosomes by SWR1C and the H2A.Z-

H2B dimer upon addition of ATP (black) compared with the negative controls of AMP-PNP 

(red) or nucleosome alone plus ATP (green). The half-lives of the fast and slow phase are 0.6 

min and 9.4 min, respectively, slightly faster than the rates of dimer eviction on the 

asymmetric 55N0 nucleosome.

Traces were collected in triplicates, averaged, and fit to a double-exponential decay model. 

The y-intercept of each fit was normalized to 1.
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Figure 7. Kinetic Model of the SWR1C-Catalyzed Histone Dimer Exchange Reaction
(1) The engagement of SWR1C to the H2A-nucleosome enhances the unwrapping and/or 

rewrapping kinetics of the nucleosomal DNA on the millisecond timescale. (2) Binding of 

ATP to the SWR1C-engaged nucleosome further affects its dynamics on the microsecond 

timescale. (3) SWR1C and free H2A.Z-H2B dimers catalyze translocation of nucleosomal 

DNA, leading to unwrapping of DNA from the linker-distal nucleosome edge. We propose 

that this is the power stroke of the reaction. (4) Unwrapping of nucleosomal DNA leads to 

eviction and replacement of the distal H2A-H2B dimer. (5) SWR1C remains engaged with 

the H2A-H2A.Z heterotypic nucleosome and catalyzes the slower replacement of the linker-

proximal H2A-H2B dimer, utilizing the H2A.Z-H2B-mediated second round of the power 

stroke.

Singh et al. Page 30

Cell Rep. Author manuscript; available in PMC 2019 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Singh et al. Page 31

K
E

Y
 R

E
S

O
U

R
C

E
S

 T
A

B
L

E

R
E

A
G

E
N

T
 o

r 
R

E
SO

U
R

C
E

SO
U

R
C

E
ID

E
N

T
IF

IE
R

B
ac

te
ri

al
 a

nd
 V

ir
us

 S
tr

ai
ns

R
os

et
ta

 2
(D

E
3)

pL
ys

S
N

ov
ag

en
71

40
1–

3

R
os

et
ta

 2
N

ov
ag

en
71

40
2–

3

C
he

m
ic

al
s,

 P
ep

tid
es

, a
nd

 R
ec

om
bi

na
nt

 P
ro

te
in

s

C
y3

 m
al

ei
m

id
e

L
um

ip
ro

be
41

08
0

C
y5

 m
al

ei
m

id
e

L
um

ip
ro

be
43

08
0

Ph
us

io
n 

H
ig

h-
Fi

de
lit

y 
D

N
A

 P
ol

ym
er

as
e

N
ew

 E
ng

la
nd

 B
io

la
bs

M
05

30

Ta
q 

D
N

A
 P

ol
ym

er
as

e
N

ew
 E

ng
la

nd
 B

io
la

bs
M

02
73

U
SE

R
 E

nz
ym

e
N

ew
 E

ng
la

nd
 B

io
la

bs
M

55
05

S1
 N

uc
le

as
e

T
he

rm
o 

Fi
sh

er
 S

ci
en

tif
ic

18
00

10
16

3X
 F

L
A

G
 P

ep
tid

e
M

ill
ip

or
e 

Si
gm

a
F4

79
9

A
de

no
si

ne
 tr

ip
ho

sp
ha

te
 d

is
od

iu
m

 s
al

t s
ol

ut
io

n 
(A

T
P)

Si
gm

a 
A

ld
ri

ch
A

65
59

A
de

no
si

ne
 5
′-

(β
,γ

-i
m

id
o)

tr
ip

ho
sp

ha
te

 li
th

iu
m

 s
al

t h
yd

ra
te

 (
A

M
PP

N
P)

Si
gm

a 
A

ld
ri

ch
10

10
25

47
00

1

Ph
os

ph
at

e 
Se

ns
or

T
he

rm
o 

Fi
sh

er
 S

ci
en

tif
ic

PV
44

06

Ph
os

ph
at

e 
St

an
da

rd
 S

ol
ut

io
n

E
M

D
 M

ili
po

re
11

98
98

A
m

ic
on

 U
ltr

a 
0.

5m
l c

en
tr

if
ug

al
 f

ilt
er

M
ill

ip
or

e 
Si

gm
a

U
FC

50
03

C
ri

tic
al

 C
om

m
er

ci
al

 A
ss

ay
s

D
N

A
 C

le
an

 a
nd

 C
on

ce
nt

ra
to

r
Z

ym
o 

R
es

ea
rc

h
D

40
32

E
xp

er
im

en
ta

l M
od

el
s:

 O
rg

an
is

m
s/

St
ra

in
s

Y
ea

st
 S

tr
ai

n 
W

15
88

–4
C

 M
A

Ta
 a

de
2–

1 
ca

n1
-1

00
 h

is
3–

11
,1

5 
le

u2
–3

,1
12

 tr
p1

–1
 u

ra
3–

1 
R

A
D

5+
 s

w
r1

::S
W

R
1–

3x
FL

A
G

-P
-K

an
M

X
-P

 h
tz

1:
:n

at
M

X
4)

R
an

ja
n 

et
 a

l.,
 2

01
3

N
/A

O
lig

on
uc

le
ot

id
es

55
–6

01
-T

A
 p

oo
r 

si
de

 5
′-

G
G

G
A

G
C

T
C

G
G

A
A

C
A

C
TA

T
C

C
-3

′
T

hi
s 

st
ud

y
N

/A

77
–6

01
-T

A
-p

oo
r 

si
de

 5
′-

G
TA

C
C

C
G

G
G

G
A

T
C

C
T

C
TA

G
A

G
T-

3′
T

hi
s 

st
ud

y
N

/A

0–
60

1-
TA

-r
ic

h 
si

de
 5
′-

C
T

G
G

A
G

A
A

T
C

C
C

G
G

T
G

C
C

-3
′

T
hi

s 
st

ud
y

N
/A

C
y3

–0
-6

01
-T

A
-r

ic
h 

5′
-C

y3
-C

T
G

G
A

G
A

A
T

C
C

C
G

G
T

G
C

C
-3

′
T

hi
s 

st
ud

y
N

/A

C
y3

–3
-6

01
-T

A
-r

ic
h 

5′
C

y3
-G

C
C

 T
G

G
A

G
A

A
T

C
C

 G
G

T-
3′

T
hi

s 
st

ud
y

N
/A

78
–6

01
-T

A
-r

ic
h 

5′
-G

G
A

T
C

C
TA

A
T

G
A

C
C

A
A

G
G

A
A

A
G

C
-3

′
T

hi
s 

st
ud

y
N

/A

C
y3

–0
-6

01
-T

A
-p

oo
r 

5′
-C

y3
-A

C
A

G
G

A
T

G
TA

TA
TA

T
C

T
G

A
C

A
C

 G
T

G
C

-3
′

T
hi

s 
st

ud
y

N
/A

R
ec

om
bi

na
nt

 D
N

A

pR
E

T-
yH

2A
-K

12
0C

T
hi

s 
St

ud
y

N
/A

pR
E

T-
yH

2A
Z

-K
12

6C
T

hi
s 

St
ud

y
N

/A

pR
E

T-
yH

2A
Z

T.
 R

ic
hm

on
d

N
/A

Cell Rep. Author manuscript; available in PMC 2019 June 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Singh et al. Page 32

R
E

A
G

E
N

T
 o

r 
R

E
SO

U
R

C
E

SO
U

R
C

E
ID

E
N

T
IF

IE
R

pR
E

T-
yH

2A
T.

 R
ic

hm
on

d
N

/A

pR
E

T-
yH

3
T.

 R
ic

hm
on

d
N

/A

pR
E

T-
yH

4
T,

 R
ic

hm
on

d
N

/A

pR
E

T-
xH

4
T.

 R
ic

hm
on

d
N

/A

pR
E

T-
hH

3.
2-

G
33

C
T

hi
s 

St
ud

y
N

/A

pG
E

M
-6

01
T

hi
s 

St
ud

y
N

/A

So
ft

w
ar

e 
an

d 
A

lg
or

ith
m

s

Im
ag

eQ
ua

nt
G

E
ht

tp
://

w
w

w
.g

el
if

es
ci

en
ce

s.
co

m
/e

n/
us

/s
ho

p/
pr

ot
ei

n-
an

al
ys

is
/m

ol
ec

ul
ar

-i
m

ag
in

g-
fo

r-
pr

ot
ei

ns
/im

ag
in

g-
so

ft
w

ar
e/

im
ag

eq
ua

nt
-t

l-
8–

1-
p-

00
11

0

O
ri

gi
nL

ab
O

ri
gi

nL
ab

 C
or

po
ra

tio
n

ht
tp

s:
//w

w
w

.o
ri

gi
nl

ab
.c

om
/

B
ur

st
 A

na
ly

ze
r

B
ec

ke
r 

&
 H

ic
kl

 G
m

B
H

ht
tp

s:
//w

w
w

.b
ec

ke
r-

hi
ck

l.c
om

/p
ro

du
ct

s/
bu

rs
t-

an
al

yz
er

/

Cell Rep. Author manuscript; available in PMC 2019 June 03.

http://www.gelifesciences.com/en/us/shop/protein-analysis/molecular-imaging-for-proteins/imaging-software/imagequant-tl-8–1-p-00110
https://www.originlab.com/
https://www.becker-hickl.com/products/burst-analyzer/

	SUMMARY
	In Brief
	Graphical Abstract
	INTRODUCTION
	RESULTS
	Dynamic Nucleosome Fluctuations Specify a Substrate Competent for SWR1C Remodeling
	H2A.Z-H2B Dimers Activate Dimer Eviction by SWR1C
	SWR1C Induces Unwrapping of DNA at the Nucleosomal Edge
	The SWR1C-Catalyzed Replacement of H2A-H2B Dimers Is Markedly Asymmetric
	SWR1C-Nucleosome Interactions Couple ATPase Activity to Dimer Eviction

	DISCUSSION
	Conformational Fluctuations of the Nucleosome during the Dimer Exchange Reaction
	Nucleosome Recognition by INO80C and SWR1C
	Does DNA Translocation Promote Histone Replacement?
	SWR1C Catalyzes an Asymmetric Dimer Exchange Reaction

	STAR⋆METHODS
	CONTACT FOR REAGENT AND RESOURCE SHARING
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Bacterial Strains
	Yeast Strains

	METHOD DETAILS
	Reconstitution of fluorescently labeled mononucleosomes
	Purification of yeast SWR1C
	Nucleosome dynamics measurements using fluorescence correlation spectroscopy (FCS)
	Transient kinetic measurements of nucleosome remodeling
	ATPase ASSAYS

	QUANTIFICATION AND STATISTICAL ANALYSES

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	KEY RESOURCES TABLE

