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Pathogen-Mediated Disruption of Host Physiology Leads to
Immune Activation in Caenorhabditis elegans
The evolution of bacterivorous nematodes, such as Caenorhabditis elegans, has been shaped by
interactions with environmental microbes, which for nematodes are both sources of food and
agents of disease. As a result, C. elegans has evolved protective host responses coordinated
through multiple pathways, which are required for host survival during microbial infection.
Following exposure to a pathogen, putative immune effectors are transcriptionally up-regu-
lated, which has led to an extensive search for the mechanisms underlying pathogen recogni-
tion in this simple metazoan host. Biological rationale for the existence of inducible immune
defenses has come from the recognition that physiologic [1,2] or aberrant [3] activation of
immune responses constitutes an important source of cellular stress for nematodes, arguing
that these protective host responses must be tightly regulated to ensure host survival. However,
despite much effort, the mechanisms underlying the activation and regulation of immune path-
ways in nematodes have, until recently, been elusive. In mammals, binding of conserved micro-
bial molecules (so-called microbe-associated molecular patterns, or MAMPs) to cell surface
pattern-recognition receptors (e.g., toll-like receptors) is a major method of pathogen detec-
tion. Such mechanisms may operate in nematodes [4–6], but a bona fide MAMP and its recep-
tor have yet to be characterized in worms. Recently, a number of studies have supported the
hypothesis that the nematode monitors for perturbations in host physiology that accompany
infection with pathogenic microbes or the effects of their secreted toxins [7–9]. A related con-
cept was originally pioneered in studies of plant immunity, where it is often called effector-trig-
gered immunity. The major emerging theme here is that the mechanisms of surveillance
immunity, as they are referred to in this review, are molded by the strategies employed by
microbes to cause disease in the host (Fig 1).

Inhibition of Host Translation Activates a Protective Immune
Response in Nematodes
Amultitude of bacteria produce toxins that interrupt host mRNA translation. In the case of C.
elegans, this appears to have created selection pressure to evolve mechanisms that monitor
overall translation capacity as a means to detect pathogen infection. Characterization of these
mechanisms by three separate groups working in parallel provided the first demonstration of
surveillance immunity in nematodes [7–9]. One such toxin that targets host translation is exo-
toxin A (ToxA), which is produced by the human bacterial pathogen Pseudomonas aeruginosa
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and cripples elongation of the growing peptide strand by ribosylating host elongation factor 2.
Exposure of C. elegans to P. aeruginosa interrupts translation in intestinal epithelial cells [8].
This, in turn, causes an increase in the protein expression of a transcription factor called ZIP-2,
which works together with the conserved regulator CEBP-2 to regulate immune responses in
C. elegans [7,8,10]. The end result is the up-regulation of defense-associated genes via pathways
that are required to survive the otherwise lethal effects of this toxin [7–9]. Importantly,

Fig 1. Immune surveillance inC. elegans. Cellular damage and disruptions in translational capacity or
mitochondrial homeostasis that occur during microbial infection, or through the effects of pathogen-encoded toxins,
are detected by surveillance programs to activate protective host responses in nematodes, examples of which are
presented. The photograph on the left shows the behavioral avoidance phenotype of wild-typeC. elegans to a
xenobiotic toxin, which was placed in the lawn of nutritious and otherwise attractive bacteria. In the center, a
transgenicC. elegans strain, which was engineered to express green fluorescent protein (GFP) as a visual readout
of immune pathway activation, was photographed after exposure to an immunostimulatory anti-infective molecule.
GFP stains the intestinal epithelial cells of these animals, the site where this immune pathway is strongly activated
(the red color in the pharynx is a marker used to identify transgenic animals). On the right, quantitative real-time
PCR data are presented to show the dramatic induction of a cytochrome P450 detoxification gene by a xenobiotic
toxin. These images have been previously published [20,21] and are used here with permission.

doi:10.1371/journal.ppat.1005795.g001
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nematodes respond to the inhibition of translation to induce this response rather than to the
structure of the toxin itself or to the effects on its host target, EF2 [7]. Induction of immune
defenses in nematodes also occurs if host translation is interrupted through mutation or RNA
interference (RNAi)-mediated gene knockdown of genes required for protein synthesis, which
the host may be interpreting as pathogen or toxin exposure [8,9]. Interestingly, reduction of
translation (and interruption of other core cellular processes) induces a behavioral avoidance
response in C. elegans, which is controlled by a neuroendocrine axis involving serotonergic and
c-Jun N-terminal kinase (JNK) signaling [9]. Together, these studies indicate that the overall
state of host translation is monitored as a means to engage protective host responses, which
involve the elaboration of protective immune effectors and a behavioral avoidance response.

Perturbation of Mitochondrial Homeostasis Leads to Immune
Pathway Induction inC. elegans
Disruption of mitochondrial homeostasis often accompanies bacterial infection, which occurs
at least in part through the direct effects of pathogen-encoded toxins that poison mitochondrial
function [11]. Interestingly, 18% of 560 bacterial species isolated from natural habitats of C. ele-
gans caused mitochondrial stress in the laboratory strain of C. elegans, which highlights the
selection pressure faced by free-living nematodes [12]. Indeed, several studies have now estab-
lished that the mechanisms, which function to maintain mitochondrial function under nonho-
meostatic conditions, also engage innate immune defenses [8,12–14]. During mitochondrial
stress, organelle function is maintained by nuclear-encoded molecular chaperones, whose tran-
scription is regulated by a signaling pathway called the mitochondrial unfolded protein
response (UPRmt) [14]. The transcription factor ATFS-1, a key regulator of the UPRmt, is nor-
mally taken efficiently into the mitochondria and degraded, but under conditions of mitochon-
drial stress, the uptake of ATFS-1 into mitochondria is compromised, freeing cytosolic ATFS-1
to traffic to the nucleus, where it induces mitochondrial stress-response proteins [14]. Interest-
ingly, ATFS-1 also enters the nucleus during P. aeruginosa infection and causes the transcrip-
tional induction of putative antibacterial immune effectors, which are required for C. elegans to
resist infection by P. aeruginosa [13]. In addition, the lipid ceramide acts upstream of ATFS-1
in the coordination of protective host responses following disruption of mitochondrial function
[12]. Likewise, genetic disruption of mitochondrial function, as with the inhibition of transla-
tion, induces a behavioral avoidance response, which is protective during microbial infection
[9]. All together, these data nicely demonstrate that surveillance of mitochondrial function is
another cue used by C. elegans to detect pathogen invasion.

Other Examples and Extensions of the Surveillance Immunity
Hypothesis
Intriguingly, several other examples of surveillance immunity have been described in C. ele-
gans. Disruption of the ubiquitin proteasome system, which targets proteins for degradation,
leads to immune effector activation [9,15]. In addition, DNA damage in the gonad confers
resistance to subsequent bacterial infection, perhaps via a mechanism that involves monitoring
the integrity of the genome as a means to mount protective immune responses [16]. Likewise,
disruption of histone-related processes also leads to immune effector activation [8,9].

Another key insight into the mechanisms of pathogen detection in C. elegans has come
from the recognition that host-derived signals of cellular damage are potent activators of
immune responses. In mammals, these immune response elicitors are called damage-associated
molecular patterns (DAMPs). A tyrosine derivative, hydroxyphenyllactic acid (HPLA), accu-
mulates in C. elegans following infection with Drechmeria coniospora, a fungal pathogen that
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first attacks the extracellular cuticle of nematodes and evokes a potent antifungal immune
response in the epidermis. HPLA is recognized by the epidermal G protein-coupled receptor
DCAR-1 to activate immune defenses, which is required to resist killing by D. coniospora [17].
The induction of immune effector expression by DCAR-1 can also be elicited by physical
wounding of the epidermis, arguing that this receptor controls a DAMP-mediated response in
nematodes. In a separate study, physical injury was also found to elicit antifungal immune
responses in the C. elegans epidermis [18]. Disruption of structures called hemidesmosomes,
which anchor epidermal cells to the extracellular cuticle, trigger expression of antifungal
immune effectors by liberating a transcription factor, STA-1, which is normally associated with
these proteins [18]. Thus, in addition to monitoring cellular homeostasis as a means to detect
pathogen invasion, nematodes also survey for infection-induced cellular damage. Indeed,
future studies may find that secondary signals elaborated following pathogen-mediated disrup-
tion of core physiological processes are detected to activate immune defenses, thereby connect-
ing the DAMP and surveillance immunity hypotheses.

Integration of Protective Host Responses following Perturbations
in Host Physiology
An extension of the immune surveillance hypothesis involves the host response to chemical
toxins, which often poison the same cellular processes as pathogen-encoded effectors. As in
mammals, C. elegans possess a suite of inducible genes, including cytochrome P450s and gluta-
thione-s-transferases, that metabolize toxins [19]. Interestingly, disruption of core physiologi-
cal processes by RNAi or through genetic mutation causes the induction of these small
molecule detoxification enzymes, as well as genes involved in the defense response to patho-
gens [7–9]. In addition, a conserved subunit of the Mediator transcriptional regulatory com-
plex, MDT-15, links the induction of innate immune defenses and the up-regulation of
xenobiotic detoxification genes, perhaps as a means to counter both pathogen infection and
the effects of microbial toxins [20,21]. Moreover, interruption of host translation in the germ-
line leads to the induction of small molecule detoxification genes, in addition to innate immune
effectors [22]. The up-regulation of detoxification responses in this context requires the action
of lipid biosynthesis enzymes, which presumably synthesize a soluble signal that is sensed in
the soma to coordinate this protective host response in a cell nonautonomous manner.
Together, these data indicate that core cellular processes are monitored as a means to mount
protective host responses towards both biotic and abiotic intoxication.
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