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Abstract

Background: High-throughput systems for gene expression profiling have been developed and
have matured rapidly through the past decade. Broadly, these can be divided into two categories:
hybridization-based and sequencing-based approaches. With data from different technologies being
accumulated, concerns and challenges are raised about the level of agreement across technologies.
As part of an ongoing large-scale cross-platform data comparison framework, we report here a
comparison based on identical samples between one-dye DNA microarray platforms and MPSS
(Massively Parallel Signature Sequencing).

Results: The DNA microarray platforms generally provided highly correlated data, while
moderate correlations between microarrays and MPSS were obtained. Disagreements between the
two types of technologies can be attributed to limitations inherent to both technologies. The
variation found between pooled biological replicates underlines the importance of exercising
caution in identification of differential expression, especially for the purposes of biomarker
discovery.

Conclusion: Based on different principles, hybridization-based and sequencing-based technologies
should be considered complementary to each other, rather than competitive alternatives for
measuring gene expression, and currently, both are important tools for transcriptome profiling.
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Background

During the last decade, a considerable number of high-
throughput technologies for transcriptome profiling have
been developed. These include hybridization-based tech-
nologies, such as DNA microarrays [1-3], and sequencing-
based approaches like SAGE (Serial Analysis of Gene
Expression) [4] and MPSS (Massively Parallel Signature
Sequencing) [5]. The power of DNA microarrays lies in
the simultaneous hybridization of mRNA extract from
biological samples to a pre-selected mRNA library, which
can contain up to tens of thousands of various mRNA
transcripts. The expression levels of each transcript are
obtained by reading out intensities of hybridization sig-
nals. Sequencing-based methods are based on a substan-
tially different strategy as compared to microarray
technologies. SAGE and MPSS do not require any pre-
compilation of an mRNA library of sequences, but
instead, they use type IIS restriction endonucleases, i.e.
tagging enzymes, to collect short tags (typically 10-22
bases) from each mRNA molecule, provided a relevant
recognition site exists for an anchoring enzyme. Then,
either by sequencing long concatamers of tags using con-
ventional sequencer (SAGE), or by performing iterative
parallel sequencing using a proprietary technique (MPSS),
the identity of a sufficiently large amount of tags can be
determined in an efficient manner. The abundance of
each mRNA transcript is assumed to be proportional to
the count of occurrence of its representative tag.

Favorable features of hybridization-based approaches
include a significantly lower workload and relatively low
cost. However, the probe collection on a chip, which nec-
essarily relies on the coverage and the accuracy of both
genomic sequences and clone libraries, presents a hard
constraint on its detection power. In contrast, the "tag-
and-count"-based methodologies require more advanced
instruments that are more cost- and labor-intensive, but
their capability of exhaustive transcript sampling allows
the potential identification of novel mRNAs.

The present co-existence of various DNA microarray plat-
forms and sequencing-based technologies offers biomed-
ical research increased options for transcriptome
profiling. It is, however, important to understand how to
compare data generated by these different technologies.
Recent studies indicate that performance of various micro-
array platforms, as measured by data consistency, have
been shown to be comparable [6,7]. Several attempts have
also been made to compare heterogeneous types of tech-
nologies, for instance, between microarray and SAGE |[8-
15], and between microarray(s) and MPSS [16-20]. The
results of these studies demonstrate moderate concord-
ance between technologies.
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In the present study, which is part of an ongoing cross-
platform comparison framework [6], we compare gene
expression data from MPSS with data from five different
commercially available one-dye microarray platforms.
The present study extends our previous study in three
ways: 1) the inclusion of the Illumina BeadArray® and
MPSS data, 2) the inclusion of gene expression data of a
second pool of mouse retina (MRP2) for all microarray
platforms, and 3) the investigation of variation across bio-
logical replicates, as measured over two different pools of
mouse retina samples (MRP1 and MRP2). It has been a
consensus that the use of biological replicates is an impor-
tant element to ensure the reliability of microarray results
[21]. To our knowledge, this is the first study investigating
the differences between microarray and MPSS data on
biological replicates. MPSS libraries are usually con-
structed without technical replication and data variation
across samples are generally estimated by applying a sta-
tistical model simulating the random sampling process
during tag selection for sequencing [22]. It remains
unclear whether significant variation across samples
examined by MPSS is comparable with those detected by
microarrays. As our study included technical replicates for
the microarray platforms, this provided a unique oppor-
tunity to investigate the sampling model by comparison
to microarray data where technical replicates permitted a
more robust statistical testing. The data sets of microarray
data for the first mouse retina pool (MRP1) and mouse
cortex (MC) were analyzed in our previous study, but
some results on these are also included here for the sake
of performing comparisons between the two mouse retina
pools, as we believe the investigation of biological repli-
cates is an important and novel aspect of this study.

In summary, our results showed that there were moderate,
yet significant, correlations between microarray data and
MPSS data, while the data from microarray platforms,
including the recently included Illumina arrays, generally
were well correlated. The majority of discrepant measure-
ments between the technologies based on hybridization
versus sequencing were genes with low-abundance tran-
scripts. Tag-to-gene mapping ambiguity and the absence
of tagging enzyme recognition site could also explain
some of the discrepancy between MPSS and microarrays.
Using two-way ANOVA and SAM, we examined the
microarray data for the magnitude of data variation intro-
duced by biological replicates and technical replicates,
and showed that biological variations are smaller than
platform variations. The genes we found most susceptible
to variations between biological replicates were likely to
be associated with metabolic pathways, biosynthesis, and
binding related pathways. Due to their vulnerability to
sample variation, any changes observed in these pathways
and related genes should be interpreted more cautiously
in biomarker discovery applications. Furthermore, as
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demonstrated in our study, the relative affordability of
array replicates makes them useful to corroborate MPSS
experiments where technical replicates are seldom feasible
due to higher costs. For comprehensive transcriptome
profiling, we suggest that complementary use of hybridi-
zation-based and sequencing-based technologies is likely
to provide a better solution than pursuing a single type of
technology alone.

Results

Characterization of MPSS data

MPSS libraries for MRP1 and MRP2 were generated using
'Signature' MPSS protocol. Two alternative sequencing
reactions conducted independently, i.e. two-stepper and
four-stepper sequencing, provided two read-outs of tag
sequences for each sample, and referred to as MPSS 17-bp
and MPSS 20-bp, respectively.

In the 17-bp signature sequencing, a total number of
34,341 signatures were detected for MRP1, and 29,509
signatures for MRP2. The total number of signatures was
obtained in the 20-bp signature sequencing was 34,424
and 30,967, for MRP1 and MRP2, respectively.

The assignments of signature to gene were performed as
described in the Methods section. Only the reliable MPSS
signatures were kept in the downstream analysis. In the
17-bp signature libraries, 6,001 and 5,340 unique Uni-
Gene identifiers for MRP1 and MRP2, respectively, were
identified. This corresponds to the sum of transcript cop-
ies as 615,944 and 615,771 tpm (transcript per million).
For the 20-bp tag collections, the numbers of unique Uni-
Gene identifiers were slightly smaller: 5,793 and 5,125 for
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MRP1 and MRP2, respectively, which corresponds to the
sum of transcript copies as 655,919 and 652,588 tpm.

Characterization of microarray data

All platforms showed generally good consistency among
technical replicates for all samples, both in terms of CVs
and correlation coefficients (see Additional file 1). These
two metrics did not reveal noticeable differences between
the two mouse retina mRNA pools within each platform.

In order to compare data from microarray platforms, we
calculated both Pearson and Spearman correlation coeffi-
cients for absolute expression levels and relative expres-
sion changes. To transform expression measurements
from diverse platforms onto a common scale, percentile
transformation was applied to absolute expressions for
each array data set, and then the median of percentile
transformed intensities across replicated measurements
per gene was used (see Methods for details). Filtering was
applied but was not observed to increase the correlations
between intensities, while the correlations between
log,ratios were considerably improved with filtering.

The inter-platform data agreement by measuring correla-
tion coefficients is shown in Additional file 1. The correla-
tions between Illumina and the other platforms were
generally lower than between other pairs of microarray
platforms. This could possibly be due to the lack of tech-
nical replicates for Illumina.

Comparison between microarrays and MPSS

Statistics of overlapped genes between microarray and MPSS
Table 1 provides a summary of the overlap of genes (Uni-
Gene clusters) expressed in MPSS and the microarray plat-

Table I: Statistics on overlapping genes between microarray platforms and MPSS libraries.

MRPI

Affymetrix Amersham Mergen ABI lllumina MPSS (17-bp) MPSS (20-bp)

Affymetrix 5896 5777 3584 2836 2250 1981 3021 2685
Amersham 3582 7311 7525 3693 2963 2528 3263 2832
Mergen 2785 3469 4813 5032 2140 1803 2368 2078
ABI 2299 2870 2041 11429 11418 6725 2467 2092
lllumina 2003 2470 1739 6716 11074 11071 1950 1878
MPSS (17-bp) 2813 2923 2101 2190 4439 2192 4962 4688
MPSS (20-bp) 2718 2807 2026 2097 4172 2141 4261 4808

Affymetrix ~ Amersham Mergen ABI Illumina MPSS (17-bp) MPSS (20-bp)

MRP2

Expression profiles of the two mouse retina pools (MRP| and MRP2) were obtained on five one-dye microarray platforms (Affymetrix, Amersham,
Mergen, ABI, lllumina), as well as MPSS technology. Genes were matched based on mapping to UniGene cluster IDs. For each pair of data sets, the
number of common genes with expression data after filtering is shown. The upper triangle and lower triangle represent the statistics for MRP| and
MRP2, respectively. The upper (right-most) and lower (left-most) diagonals show the total number of genes after filtering for each data set for MRPI

and MRP2, respectively.
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forms. In each pool, MPSS was found to have similar
numbers of overlapping genes with all microarray plat-
forms, with Illumina having the smallest number of com-
mon genes. This fact contradicted our knowledge that
[llumina as well as ABI have the newest probe collections
and higher probe densities. This may have been because
these newer chips had to be mapped to an older UniGene
build in order to use the same build as the ones used for
the other platforms that were already included earlier in
the study. Generally, MPSS from MRP1 presented a larger
number of overlapping genes with the microarrays than
MPSS from MRP2.

Correspondence between microarray and MPSS

The Pearson correlation coefficients of log10-transformed
gene expression were used to measure the overall linearity
between microarray and MPSS data, since it is well known
gene expression data often have a distribution close to
log-normal. As shown in Table 2, the cross-technology
data correlations, i.e. between hybridization-based data
and sequencing-based data, were found to be poorer than
those of within-technology comparison. Taking MPSS 17-
bp signature data as an example, the Pearson correlations
of the logarithmic transformed expressions between MPSS
data and microarrays ranged from 0.39 (MPSS - Illumina)
~0.48 (MPSS - Affymetrix) for MRP1, and 0.40 (MPSS -
[llumina) ~0.52 (MPSS - Affymetrix) for MRP2. It is
expected that a 17-bp signature decoding would result in
higher sensitivity, while the 20-bp one would provide bet-
ter specificity, but it is unclear whether they would differ
in terms of their correlation with other platforms. From
our analyses, we observed that MPSS 17-bp and 20-bp tag
lengths have comparable correlations to microarray plat-
forms, as shown in Table 2.

Next, we wanted to examine how data correspondence,
both in terms of binary presence call and correlation of
expression, across the two technologies varied as a func-
tion of transcript abundance. In MPSS, a gene was defined
as present if the copy number was higher than a given tag

Table 2: Pearson correlation coefficients across data sets
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count threshold, otherwise, it was considered absent.
These calls were combined with microarray present/
absence calls to perform a chi-square test to measure the
agreement of present and absent calls between the tech-
nologies. When the threshold of tag count changed from
1 to 100 at a step of 1 (tpm), we obtained the binary call
agreements as a function of tag abundances (see Figure 1).
We observed that the technologies often have the best cor-
respondence when copy number threshold was set
around 8~12. As the threshold increases, the correspond-
ence measure tended to drop, which probably can be
attributed to the drastically reduced number of MPSS
measurements above the given threshold. The trend of
data correspondence versus tag count thresholds for each
sample was similar among all microarray platforms. Sim-
ilarly, we also obtained data correlations when applying
different tag count thresholds (see Figure 2). The fluctua-
tions in data correlations were small, but overall, Affyme-
trix had better presence-call agreement and linear
correlations with MPSS than the other microarray plat-
forms.

We also investigated the relationships for highly abun-
dant genes. Based on the CAT (Correspondence at The
Top) plots [23] (see Figure 3 and Additional file 2), we
observed that Illumina, ABI and Affymetrix had higher
correspondence at the high-abundance gene expression
levels, whereas Amersham had the lowest. For all plat-
forms, the correspondence with MPSS gradually
improved and converged when the gene set at the top was
increased.

Furthermore, we found that 305 genes (286 in MRP1 and
272 in MRP2) were present across five microarray plat-
forms, but were not detected by MPSS, neither from the
17-bp library nor the 20-bp library. For both libraries,
about 64% of these genes were filtered out in the tag-to-
gene mapping procedure. A total of 97 genes were not
detected by MPSS at all (any sample or library), among
which 11 were labeled "GATC"-negative. Using percen-

Affymetrix Amersham Mergen ABI IHlumina MPSS (17 bp) MPSS (20 bp)
Affymetrix 0.99 0.58 0.49 0.53 0.49 0.48 0.47
Amersham 0.56 0.99 0.51 0.60 0.52 0.45 0.45
Mergen 0.49 0.50 0.99 0.48 0.42 0.41 0.39
ABI 0.53 0.59 0.46 0.99 0.56 0.41 0.40
lllumina 0.51 0.51 0.44 0.55 0.99 0.39 0.38
MPSS (17 bp) 0.52 0.45 0.44 0.43 0.40 0.65 0.98
MPSS (20 bp) 0.51 0.46 0.44 0.44 0.40 0.98 0.65

Gene expression data after filtering (microarray intensities and MPSS tag counts) were log,-transformed prior to calculating the Pearson
correlations. Both microarray and MPSS measurements were mapped to UniGene clusters. The upper and lower triangle shows pair-wise
correlations for data on MRPI| and MRP2, respectively. The numbers on the diagonal are the within-platform correlations between MRPI and

MRP2.
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Figure |

Correspondence of expression detection between
microarrays and MPSS. Chi-square statistics was used as
a measure of data correspondence in terms of absent/
present call made by each microarray platform versus each
MPSS library. For microarray data, a fixed definition of the
"Present/Absent" call based on quality flags and filtering sta-
tus for each gene. For MPSS data, a gene (UniGene clusters)
was considered "Present"” if the copy number was above a
given threshold, otherwise it was considered "Absent". The
"Present/Absent" call threshold varied from | to 100 tpm for
MPSS in steps of | and Chi-square statistics were calculated
for each threshold. Part (a) shows how the p-values from
these comparisons varied with threshold on data for MRPI,
and part (b) shows the same for MRP2.

tile-transformed data, we found that 67.8% of the remain-
ing genes (60 of 86) were detected as having low
expressions (percentile less than or equal to 50). This indi-
cates that low-end sensitivity is the major reason for data
discrepancy.

Taking the whole MPSS libraries as gold standard, we
defined false negative detections by each microarray as the
number of genes that were detected by MPSS, as well as
printed on the chip, but were not detected by the microar-
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Figure 2

Correspondence of expression level between micro-
arrays and MPSS. Pearson correlation was used as a meas-
ure of correspondence of expression levels reported by each
microarray platform versus each MPSS library. For microar-
ray data, normalized and filtered intensities were used. With
the tag count threshold being varied from | to 100 tpm for
MPSS in steps of |, Pearson correlations were calculated for
the genes with tag counts above each given threshold. Part
(2) shows how the correlations from these comparisons var-
ied with threshold on data for MRPI, and part (b) shows the
same for MRP2.

ray. We found that the proportion of false negatives in the
five microarray platforms ranged from 12.99% (Affyme-
trix, MRP1) to 2.18% (ABI, MRP1).

Evaluation of data variations in biological replicates

Using SAM to characterize variation in detection of expression
changes across biological replicates

Based on the data from the microarrays where we had
technical replicates, we used SAM to compare the detec-
tion of differential expression from MRP1:MC versus
MRP2::MC, i.e., differential expression was investigated
between the two mouse retina replicates based on a com-
mon reference of mouse cortex. As shown in Figure 4, the
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Figure 3

CAT plots using MPSS data as reference. Correspond-
ence between MPSS and microarray platforms on detection
of highly expressed genes was assessed by CAT plots. In Fig-
ure 3, the x-axis represents the sizes of gene sets at the top
of gene expressions, from 10 to 800 at a step of 5, and the y-
axis shows the percentage of overlapping genes between
each microarray platform and MPSS in the given set of genes.
Part (a) represents MRPI, and part (b) shows MRP2.

experiment groups across platforms and biological repli-
cates, except for MRP1::MC experiments on Mergen, had
quite comparable performance with respect to FDR (False
Discovery Rate) versus delta. Delta represents the cutoff
outside which genes are identified as differentially
expressed by having a larger modified t-statistic than
expected under the null model (a low delta value nor-
mally gives a high FDR, and vice versa). All platforms,
except for Affymetrix, showed a larger number of differen-
tially expressed genes in MRP1::MC than in MRP2:MC.
The two retina pools showed the most disparate behavior
on the Mergen platform, and the least on the ABI plat-
form. Moreover, when looking at MRP1:MC and

http://www.biomedcentral.com/1471-2164/8/153

| affy MRP1:MC
— amer MRP1:MC
merg MRP1:MC
] abi MRP1:MC
affy MRP2:MC
amer MRP2:MC
- merg MRP2:MC
abi MRP2:MC

% of genes called as differentially expressed

0 02 04 06 08 1 12
threshold (delta)

0351
affy MRP1-MC
amer MRP1:MC
merg MRP1-MC

03 abi MRP1:MC

-~ affy MRP2:MC
amer MRP2:MC

o
o
&

abi MRP2:MC

o
[N
T

FDR (False Discovery Rate)
o
@

01F

] 02 04 06
threshold (delta)

Figure 4

Statistics of differentially expressed genes identified
by SAM as a function of "delta" threshold. In Figure 4,
the x-axis represents the threshold ("delta") for differential
expression identification which changes from 0.1 to 1.2 ata
step of 0.1, while the y-axis is in (a) the percentage of genes
which were considered to be differentially expressed at a
given threshold; and in (b) false discovery rate.

MRP2::MC combined, ABI tended to call a higher percent-
age of genes as differentially expressed between mouse ret-
ina and cortex samples than the other three microarray
platforms.

Two-way ANOVA to identify individual genes with significant variation
Two-way ANOVA analysis was performed to identify the
contribution of platforms and samples on data consist-
ency. We examined filtered log,ratios (MRP1::MC and
MRP2::MC) after normalization matched by both RS (Ref-
Seq) and RSEXON (RefSeq ID and exon) across all four
platforms where technical replicates were available. Only
those genes that did not have missing values across the 10
measurements were used in this analysis. In RS- and
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RSEXON-based matching, 563 and 305 genes, respec-
tively, satisfied the criterion. The threshold of statistical
significance was chosen as p < 0.001.

The majority of genes did not exhibit any bias induced by
neither sample replicate nor by platform. For the two
matching options 52.0 % (293 of 563) and 55.9% (170 of
304) of the genes for RS-based and RSEXON-based
matching, respectively, were robust both in sample and
platform variability. Based on Table 3, it can be seen that
the number of genes that were subject to platform-
induced variability was larger than the sample-induced
variability. The data in this table also further support that
probes matched at the exon level (RSEXON-based match-
ing) across platforms resulted in lower data variations
than those matched at the transcript level (RS-based
matching), as previously observed [6].

Comparison of data variation between microarray and MPSS
From the four microarray platforms with technical repli-
cates, we used one-way ANOVA to identify genes with dif-
ferential expression in MRP1 versus MRP2. These results
were then compared with the Z-test statistic commonly
used for detecting differential expression in MPSS data.
The microarray data used for this analysis was restricted to
genes that had valid measurements for all ten technical
replicates. We also excluded measurements from probes
with ambiguous UniGene mapping, which was used to
match microarray data with MPSS data. For the four
microarray platforms, Affymetrix, Amersham, Mergen,
and ABI, we obtained 4,783, 5,987, 3,610, and 8,460 Uni-
Gene identifiers with corresponding p-values from one-
way ANOVA, respectively.

Table 3: Summary of two-way ANOVA results

RS RSEXON
total # of genes (i.e. RSs or RSEXONs) 563 304
# of genes that showed neither sample- nor 293 170
platform- related variation
# of genes that showed sample-related 27 13
variation
# of genes that showed platform-related 260 132
variation
# of genes that showed both sample- and 20 I

platform- related variation

Two-way ANOVA was conducted for all microarray platforms that
had been analyzed with technical replicates (Affymetrix, Amersham,
Mergen, ABI). The genes that have valid measurements after
normalization and filtering procedure in all technical replicates were
included for the analysis. The analysis was conducted on gene
expression measurements matched across platforms based on RefSeq
ID (RS) and RefSeq Exon (RSEXON). A gene was said to have sample-
related variation if the p-value of the sample effect size was significant
(p < 0.001), and similarly for platform-related variation.
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Taking a threshold p-value of 0.001, we summarized the
concordant and discordant calls between the microarray
one-way ANOVA test and the MPSS Z-test, as represented
in Table 4. The proportion of concordant calls between
microarrays and MPSS were very similar among various
platforms and 17-bp/20-bp MPSS signatures, ranging
from 60.04% ~63.43%. Most of the discordances between
microarrays and MPSS were cases were differential expres-
sion was detected by MPSS but not by microarrays: ~94%
for Affymetrix, ~89% for Amersham, ~79% for ABI, and
~97% for Mergen. Data variation between biological rep-
licates with MPSS without technical replicates may under-
standably be larger than with microarrays when using
sufficient numbers of replicates. It is easier to obtain
robust statistical testing based on replicates. Also in this
analysis, we observed that the statistics with MPSS 17-bp
results and the 20-bp results did not differ significantly,
consistent with the results of previous analyses.

GSEA to summarize differences between biological replicates using

biological themes

For each microarray platform, we applied GSEA to gener-
ate hypotheses regarding which biological processes or
pathways might be responsible for the differences
between the two replicate sample pools. Only the genes
(RSs) which had valid values across all 10 chips were used,
that is, 2,490 for Affymetrix, 4,899 for Amersham, 3,132
for Mergen, and 7,556 for ABI. In GSEA, the GO hierarchy
level was set to 4, and the permutation times as 1000. Sev-
eral biological themes resulted from GSEA with enrich-
ment score, but none were statistically significant.
Although different microarray platforms revealed differ-
ent degrees of variation between MRP1 and MRP2, the
GSEA analyses on the affected gene sets were similar
among platforms. When considering enriched themes
found in all four platforms, there were 15 GO terms from
the "biological process" category enriched in MRP1 com-
pared to MRP2 and 12 GO terms from the "molecular
function" category. There were no terms found to be
enriched in MRP2 common to all platforms [see Addi-
tional file 3].

Discussion

With microarray technology being rapidly developed and
advanced in the past decade, it has become an important
tool for studying gene expression patterns. In parallel, the
technologies based on the "tag-and-count" principle, such
as SAGE and MPSS, are also being used for exploring the
full transcriptome. Although some efforts in designing
and adopting standards of microarray experiments (e.g.
ERCC [24]) and data deposition (e.g. MIAME [25]) are
paving the way towards data meta-analyses and integra-
tion, it remains a critical challenge to systematically com-
pare cross-sample, cross-platform, and cross-technology
data. To this end, we have established a framework which
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Table 4: Comparison of differentially expressed gene identification between microarrays and MPSS

Affymetrix Amersham Mergen ABI

MPSS (17-bp) MPSS (20-bp) MPSS (17-bp) MPSS (20-bp) MPSS (17-bp) MPSS (20-bp) MPSS (17-bp) MPSS (20-bp)

Number of genes included in the comparison 1912 1827 2248 2127 1518 1452 1628 1535

Number of genes considered as differentially 29 30 49 46 17 16 8l 79
expressed in both microarray and MPSS

Number of genes considered as having NO 1119 1084 1350 1277 937 905 900 858
differential expression in both microarray and MPSS

Number of genes that are considered as 714 664 761 717 550 517 514 473
differentially expressed in MPSS but not in the
microarray

Number of genes that are considered as 50 49 88 87 14 14 133 125
differentially expressed the microarray but not in
MPSS

One-way ANOVA was conducted for all microarray platforms that had been analyzed with technical replicates (Affymetrix, Amersham, Mergen, ABI) to identify differentially expressed genes between
samples, MRP| and MRP2. For MPSS libraries, a Z-test was used to identify differentially expressed genes, since technical replicates were not available. A threshold p-value of 0.001 was used for both statistical
tests to define differential expression. Based on UniGene cluster mapping, identification of differentially expressed genes from MPSS was compared to identification of differentially expressed genes from the
microarrays. For each microarray platform, a column corresponding to comparison with the |17-bp tag library and a column corresponding to the 20-bp tag library are shown. The detailed comparisons of
agreement/disagreement were restricted to the common UniGene clusters where there was a one-to-one correspondence with MPSS tags.
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accommodates various platforms and various technolo-
gies, using quality-controlled biological samples [6]. Sev-
eral recently published studies [7,23,26] have concluded
that, for DNA microarray technology, the reproducibility
of technical replicates both within a given platform and
across platforms are generally good, especially when the
experimental design, protocols, and data analyses are
standardized [6]. In this study, we have examined data
correspondence and discrepancy between MPSS and one-
dye microarray platforms, representing sequencing-based
and hybridization-based technologies, respectively. We
examined whether and how the behavior of these distinct
technologies would vary when challenged with biological
replicates.

The main observations made in this study were that across
the microarray platforms, both intra- and inter-consist-
ency of data was generally high, but the agreement
between MPSS and any microarray platform was moder-
ate, as also reported in previous studies [17,18]. The dif-
ferences in signal detection between MPSS and microarray
platforms were observed both in terms of lower correla-
tions and in terms of genes that were consistently found
as expressed in MPSS but not in microarrays and vice
versa. These findings were also identified in a similar
study [18], where this could be the reflection of the
known limitations of the MPSS technology [27].
Although mapping problems may have contributed to the
observed discrepancies, it is more likely that inherent dif-
ferences between hybridization-based and sequencing-
based technologies caused the systematic differences in
gene expression detection between MPSS and microar-
rays. For a given microarray design, the set of genes that
can be detected is pre-determined, while for MPSS and
similar technologies, the main limitation is that presence
of a recognition site is a requirement for detection. How-
ever, when comparing the genes represented on the vari-
ous microarrays to the genes detected as expressed with
MPSS, we found approximately 80% of the genes on the
ABI and Illumina arrays had not been found in the MPSS
libraries and about half of the genes for the Affymetrix,
Amersham and Mergen arrays. This suggests that all the
microarray designs were comprehensive with respect to
genome coverage, and that the fixed probe sets may not
have been a main limitation in this study. Furthermore, in
all microarray platforms there were a number of genes
that were detected as present but not found in the MPSS
libraries. Among the 97 such genes (UniGene IDs) com-
mon to all five microarray platforms, there were 11 that
were found to be lacking the Dpnll recognition site
("GATC") and could not be expected to give any signal in
MPSS. For the remaining 86 genes, the expression meas-
urements on the microarrays varied and included genes
classified as consistently highly expressed, as well as genes
classified as having consistent low expression. An investi-

http://www.biomedcentral.com/1471-2164/8/153

gation of the probe sequences of the most highly
expressed genes in the microarray platforms did not reveal
noticeable differences in the number of possible sequence
matches between those found in MPSS and those not
found in MPSS. It is nevertheless possible that some of the
false-positives in microarrays relative to MPSS could be
caused by cross-hybridization due to suboptimal probe
design. However, without a gold-standard, it is not possi-
ble to ascertain that the microarrays are overestimating
the expression for these genes. For the genes identified as
having lower expression in microarrays but not found in
MPSS, it is possible that this may have been caused by
running the MPSS experiments with insufficient sampling
depths resulting in a less representative sampling of tags.
There were also a number of genes that can be regarded as
"false-negatives" on the microarrays relative to MPSS, in
the sense that they were represented on the microarrays
and detected by MPSS but not detected as expressed by the
microarrays. For these genes there was less consistency
across the platforms and only one gene detected by MPSS
was not identified as expressed by any of the microarrays
where it had been represented. Again, suboptimal probe
design due to incomplete sequence knowledge can be a
factor. Other possible reasons include MPSS sequencing
errors [19], high complexity in transcriptional activities
[28], heterogeneity in polyadenylation cleavage sites [29]
and various sequence-introduced biases [30,31]. We have
however not been able to estimate the size of such contri-
butions in this study. It has also been reported that the
existence of SNPs [32] can influence the interpretation of
digital-based experimental data such as MPSS or SAGE,
but this is not expected to have been a major contributing
factor in this study. The fact that the mapping to UniGene
IDs had been based on two different versions of the Uni-
Gene database is a possible confounding factor. However,
this cannot explain all the discrepancies as several genes
were manually checked against the latest UniGene build
and found to have consistent mappings.

Data filtering is commonly applied both to microarray
and MPSS data. Both in the present study and an earlier
study, we have shown that data filtering considerably
improves data consistency between microarray platforms,
and in particular on relative expression (log,ratios). The
low intensity signals generally corresponding to low-
abundance transcripts are typically filtered as it is expected
that the signal-to-noise ratio becomes too small. The com-
parisons between MPSS and microarrays indicate that the
MPSS technology also has problems in detecting low-
abundance transcripts. It appears that neither technology
can reliably detect transcripts expressed at very low fre-
quencies in an environment where the expression levels of
all transcripts could span several orders of magnitude.
This is a major problem as many transcripts have low-
abundance, and there is currently a consensus that many
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of the corresponding genes are associated with critical reg-
ulatory roles in the cells [33]. For microarrays to improve
the low-end sensitivity, the optimization of probe design,
as well as the advances of scanning techniques, may be
key issues. In sequencing-based systems, increase of
library size and sequencing accuracy may increase the con-
fidence in low-abundance transcripts identification.

Recent studies have demonstrated that factors such as
strain [34,35], gender [36,37], as well as diet [38,39] and
circadian variation, [40] can influence gene expressions in
various organisms and tissues. In our study we created two
retina samples by randomized pooling of samples from a
large number of individuals aiming to cancel out the
effects of such factors. We examined the biological varia-
bility at several levels: (1) the influence of biological rep-
licates on the measures of intra- and inter-platform data
consistency; (2) the overall capability of differentially
expressed gene identification by each biological replicate;
and (3) the genes or gene sets that were most susceptible
to biological variability between MRP1 and MRP2. In gen-
eral, the two pools showed very similar gene expression
patterns as expected, but for some genes there was a differ-
ence between the two mouse retina pools that was consist-
ent across the platforms and technologies. Moreover,
MPSS also differed considerably from the microarray plat-
forms in terms of identification of genes differentially
expressed in MRP1 versus MRP2. As is commonly done
due to high instrumental complexity and cost, MPSS data
for each sample was collected without technical replicates,
and differentially expressed genes were identified by a sta-
tistical approach. The Z-test, found by Man et al. [22] to
perform well in terms of specificity, power, and robust-
ness for determining statistical significance in SAGE,
detected far more differentially expressed genes than the
statistical tests applied to the microarray data with techni-
cal replicates. Also in terms of fold-change, MPSS detected
far more genes as having two-fold or larger change than
the microarray platforms. In this respect, Illumina data,
which also did not have technical replicates, behaved sim-
ilarly as the other microarray platforms, hence the lack of
technical replicates alone cannot explain all of these dif-
ferences. In light of the construction of the two retina
pools and the good agreement between the microarray
platforms, this may be a sign of caution for those who
intend to use MPSS for the purpose of biomarker discov-
ery without incorporating technical replicates. Until tech-
nological advances make technical replicates in MPSS
feasible and MPSS data are further studied and confirmed
using independent and complementary technologies,
MPSS may not be the optimal choice for identification of
novel fingerprints based on differential expression.

The GSEA results across the microarray platforms with
technical replicates indicated some common biological
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themes for the differences between MRP1 and MRP2.
Although the results were not statistically significant, they
were very consistent across the platforms and indicated
metabolism and transcriptional regulation as general bio-
logical themes describing the differences. This was also
confirmed by GOstat [41] analysis using a list of genes
consistently identified as differentially expressed when
also including MPSS data (data not shown). Based on the
construction of the two retina pools, these results indicate
that caution should be exercised when interpreting results
of differential expression.

An earlier study [42], which compared microarray data,
EST-based expression experimental data and SAGE using
published data sets, reached the conclusion that the agree-
ment between the methods was highly variable from gene
to gene, and the authors advocated the need for gene-by-
gene validation of important global gene expression
measurements using non-global methods. The present
results support a similar conclusion, and we emphasize
that sequencing-based methods in general as well as
hybridization-based methods have inherent technologi-
cal limitations. Microarrays are limited by pre-selected
gene sets and possible cross-hybridization problems, as
was indicated in this study. Apart from the obvious limi-
tations of restriction site presence, MPSS is an open-ended
system but has problems related to the mapping of tags
limiting the set of genes for which it is possible to obtain
reliable measurements. Altogether, this suggests that
exploitation of the complementarity of these technologies
is a better approach for global transcriptome analysis.

Conclusion

Overall, the agreement between MPSS and microarrays
was significant, but lower than between different microar-
ray platforms. Measurements of genes with low expres-
sion more often disagreed than highly expressed genes, as
expected, but also for genes with high expression there
were systematic differences in detection. We found that
differences in gene expression measurements between
MPSS and microarrays are not only due to increased sen-
sitivity of MPSS to low abundance transcripts and the abil-
ity of MPSS to measure new transcripts. Further studies
comparing sequencing-based and hybridization-based
technologies, including both biological replicates using
different types of tissue samples as well as technical repli-
cates are warranted in order to delineate in more detail the
shortcomings of these technologies. Future methodologi-
cal development will be necessary to maximize the infor-
mation derived from the two complementary types of
technology.
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Methods

Biological samples

RNA samples were isolated from three sources: two pools
of C57/B6 adult mouse retina (MRP1 and MRP2, n = 700)
and Swiss-Webster post-natal day one (P1) mouse cortex
(MC) (n = 19). Retinas were dissected, collected and
stored in Trizol (one pair of retinas per eppendorf tube) at
-80°C prior to pooling. During the RNA extraction proc-
ess, two pools of adult mouse retina (MRP1, MRP2) were
created (700 retinas per pool), aliquoted. All samples
were stored at -80° C until being used in experiments. The
animal experiments were approved by the Institutional
Animal Care Facility at Harvard University.

Microarray platforms, data processing and consistency
assessment

Whole-genome mouse gene expression arrays (one-dye
oligonucleotide microarrays) were investigated in this
study, including: Affymetrix GeneChip®, Amersham (now
GE Healthcare) CodeLink®, Mergen ExpressChip®,
Applied Biosystems (ABI) microarrays, and Illumina Bea-
dArray®. Microarray experiments are composed of sample
preparation, hybridization, scanning and image quantita-
tion, which are a series of integrative procedures being
conducted at a laboratory, generally according to the man-
ufacturer's recommended protocols. To obtain sufficient
statistical confidence in the data analysis, for each biolog-
ical replicate (MRP1 and MRP2), five technical replicates
on each platform were obtained, with an exception on
[llumina. We wanted to include Illumina in this study to
examine the magnitude of data variation in MPSS experi-
ments and microarray experiments when no technical
replicates are performed. For details of the experimental
protocols and laboratories, we refer to Kuo et al., [6]
except for Illumina, which can be found in the Additional
file 4.

The raw data sets of 63 chips after image scanning and
quantification in each platform were collected. For Illu-
mina data, we set the filtering threshold as "Detections" =
0.9. Filtering for the other microarray platforms are
described in Kuo et al. [6]. We also performed percentile
transformation of intensities, quantiles normalization
and log,ratio calculation, as described.

Data repeatability and reproducibility [7] are two impor-
tant aspects of microarray data consistency assessment. In
this study, the former will refer to the degree of data vari-
ations among technical replicates of a platform, and the
latter will refer to data agreement across different microar-
ray platforms when using the same biological samples.
Two popularly used metics, coefficient of variations (CV)
among replicated measurements per gene and correlation
coefficient (Pearson and Spearman correlations) between
any pair of replicated experiments, were adopted to assess
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repeatability and reproducibility. For intra-platform data
consistency, the mean and standard deviation of CVs or
correlation coefficients were used as summations of each
platform's performance. For inter-platform data agree-
ment, either the mean (for normalized log,ratios) or the
median after percentile transformation (for intensities) of
repeated measurements on each platform were used in
calculating correlation coefficients.

MPSS experiment and data processing

Total RNA of MRP1 and MRP2, which were identical to
those used in microarray experiments, was sent to Lynx
Therapeutics, Inc. (now Illumina, Hayward, CA) for 'Sig-
nature'-based MPSS experiments. Following an RNA qual-
ity test on a Agilent 2100 BioAnalyzer (Agilent
Technologies, Palo Alto, CA), cDNA libraries were gener-
ated according to the Megaclone protocol [5,43]. Signa-
tures adjacent to poly (A) proximal DpnlI restriction sites
("GATC") were cloned into a Megaclone vector. The
resulting library was amplified and yielded about 1.6 mil-
lion loaded microbeads, which were loaded onto a flow
cell. Thereafter, an iterative series of enzymatic reactions
decoded the signatures as 17-bp or 20-bp sequences
(including Dpnll recognition sites "GATC") [44].

The abundance of each signature was converted to tran-
scripts per million (tpm), and the MPSS signatures were
mapped to UniGene clusters by Lynx Therapeutics, based
on the mouse genome sequence (Release #3, Feb 2003)
[45] and the mouse UniGene sequences (UniGene Build
#122) [46]. Briefly, the mapping procedure included:
extraction of 'virtual' signatures from genomic sequences,
classification of ‘'virtual' signatures from genomic
sequences, and matching of MPSS expressed signatures to
genomic signatures [44]. For the comparison with micro-
array data, we included only the reliable signatures which
were located closer to polyadenylation signal or poly(A)
tail on a mRNA sequences with known orientation infor-
mation [47]. If a UniGene cluster was found to be corre-
sponding to multiple signatures in a given library, all tag
counts were pooled to obtain the abundance of the Uni-
Gene cluster. If a tag was found to map to multiple Uni-
Gene clusters, the corresponding tag count was discarded.

Gene mapping among microarray platforms and between
microarray and MPSS

Two approaches to match probes across different microar-
ray chips, annotation-based and sequence-based probe
matching were used [6]. Briefly, by the annotation-based
approach, we obtained UniGene (UG) and LocusLink
(LL) based matching, whereas probe matches at the Ref-
Seq (RS) and RefSeqg-exon (RSEXON) levels by utilizing
actual sequence information belong to the latter.
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MPSS signatures were mapped to UniGene clusters, using
an in silico constructed "virtual tags" library, as described
above. Thus, the gene expression data measured by micro-
arrays and by MPSS were paired up for comparisons via
UniGene clusters.

Biological variations and technical variations

Two separate total mRNA extraction processes were con-
ducted on mouse retina under the same experimental set-
tings and protocols, which generated mouse retina pool 1
(MRP1) and pool 2 (MRP2). Note that Illumina data were
not included in this part of analyses due to lack of techni-
cal replicates.

Two-way ANOVA to identify individual genes of significant variation
To investigate the effects of biological variation and plat-
form variation, two-way ANOVA (Analysis of Variance)
was performed. As concluded in our previous study [6],
the sequence-based cross-platform probe matching is
more reliable than the annotation-based probe matching.
Therefore, RS- and RSEXON-based mapping were used for
this evaluation. For a given set of transcripts (RSs or RSEX-
ONs) that were reliably detected in all chips of all plat-
forms, the significances of sample-dependent bias,
platform-dependent bias and interaction between sample
and platform were determined for each transcript. Thus,
we were able to observe the gene-specific effects of sample
and platform biases.

SAM to characterize biological replicates' behavior in detecting
expression changes

A group of differentially expressed genes represents the
desired result of most microarray users. SAM (Significance
Analysis of Microarray), proposed by Tusher et al., [48] is
a method that can determine the significance of gene
expression changes by permuting replicated measure-
ments followed by an estimation of the false discovery
rate (FDR). SAM assesses both the sensitivity and specifi-
city of a microarray platform.

In our study, for each platform, the five pairs of chips on
which MRP1 and MC were hybridized respectively were
considered as one experiment group, while similarly
another experiment group consisted of MRP2 and MC
data. Prior to SAM analysis, the normalized log,ratios
underwent two sequential filtering steps: (1) filtering
according to spot quality flags; and (2) filtering out the
probes which had less than three valid measurements out
of the five replicates. For each microarray platform and
each experiment group, the number of "called" genes (as
differentially expressed) and FDR were recorded for every
threshold "delta", which steps from 0.1 to 4 at an interval
of 0.1.
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GSEA to summarize differences between biological replicates using

biological themes

GSEA (Gene Set Enrichment Analysis) [49,50] combines
functional annotations and a statistical mechanism to
determine a few sets of genes, each with a biological
theme, which are over-/under-represented between two
data sets representing two different classes. Instead of
looking at per individual gene, GSEA is focused on gene
sets pre-defined according to Gene Ontology (GO) cate-
gory, pathway, or localization, etc, whose results have
more robust and explicit biological interpretation. We
used GSEA, a web-based application provided by Babe-
lomics [51], to identify which biological process(es) and
molecular function(s) were the most susceptible to the
random differences between MRP1 and MRP2. The GSEA
results of each platform were also compared.

One-way ANOVA analysis of microarray replicates and Z-test of
MPSS runs

One-way ANOVA was conducted for each microarray plat-
form (10 experiments: five for MRP1, five for MRP2).
One-way ANOVA uses those genes that have valid meas-
urements (filtered intensities after normalization) across
all experiments as input, and assigns a p-value to each
gene indicating whether this specific gene displayed sig-
nificantly varied expression levels between two biological
replicates.

MPSS analyses were also performed on the two pools of
retina sample independently. Due to its high cost, it is not
feasible to conduct repeated MPSS experiments for each
biological sample. The common practice for those who
use MPSS to identify differentially expressed genes has
been to apply statistical tests that are able to handle non-
replicate data based on certain sampling assumptions.
The Z-statistics test [22] was applied to identify genes that
were significantly differentially expressed between MRP1
and MRP2.
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Additional material

Additional file 1

Evaluation of intra-platform and inter-platform data consistency (Affyme-
trix, Amersham, Mergen, ABI). This file shows the CVs and correlation
coefficients of both the within-platform data set and among the across-
platform data.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-153-S1.pdf]

Additional file 2

CAT (Correspondence At the Top) plots,. The CAT plots show cross-plat-
form data correspondence when using one platform as the reference.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-153-S2.pdf]

Additional file 3

List of GO terms derived from GSEA (Gene Set Enrichment Analysis).
This file provides a list of GO terms which are shown as being variable
between the two biological replicate pools used in our study.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-153-S3.pdf]

Additional file 4

Illumina BeadArray® Experimental Protocols. This is the detailed descrip-
tion of experimental protocols for Illumina BeadArray® chip.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-153-S4.pdf]
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