

Cost-Effectiveness of Response-Adapted De-Escalation of Immunotherapy in Advanced Melanoma Zachary Cartun^{1,2}; Wolfgang G. Kunz, MD, MHBA^{2;} Dirk Mehrens, MD²

Department of Radiology, UMass Chan Medical School, Worcester, MA¹ and Department of Radiology, Ludwig Maximilien Universität Klinikum, Munich, Germany²

I. Introduction

- 1/4th of US advanced melanoma patients report financial difficulties post-cancer diagnosis
- Financial burden has been identified as a significant risk factor for early mortality, particularly in healthcare systems with non-universal insurance systems - Financial Toxicity
- Combo Nivolumab and Ipilimumab (NIVO + IPI) immunotherapy markedly improves outcomes for melanoma patients (CheckMate-067 Trial (CM), NEJM, 2015)
- Similar progression-free (PFS) and overall survival (OS) is seen for patients with response-adapted treatment de-escalation (ADAPT-IT (AI) Phase II Trial, JCO, 2021)

II. Objectives

- 1. To determine the cost-effectiveness of IPI discontinuation for patients with interim imaging-confirmed tumor response (no new index lesions AND <4% tumor growth)
- 2. To estimate a worst-case Willingness-To-Pay (WTP) threshold as a baseline for future studies

Model Input Parameters	Base Case Value
Monthly Costs	
Nivolumab + Ipilimumab	\$63,834
Nivolumab	\$15,505
2nd Line Combined Therapy	\$9,548
Adverse Effects 1st Line	\$341
Adverse Effects 2nd Line	\$642
One Time Costs	
Progression Free Survival Exit	\$5,651
Surgery/Radiotherapy)	
Overall Survival Exit (Terminal Care	\$16,992
Costs)	
Utilities	
PFD	0.8
PD	0.52
Ae Disutility/Month	0.156

VIII. Acknowledgements

We would like to thank the Umass Chan Dept. of Radiology for funding this work with a global radiology grant. A special thanks also to LMU Klinikum for their support.

Figure 3. Partitioned Survival Analysis Model Design

III. Methods

- Survival curves derived from AI and CM trials (Treatment-Naïve Advanced Melanoma Patients) (Figure 2)
- Partitioned survival analysis computed with TreeAge decision-analysis (Figure 3)
- Drug Costs from Medicare Average Sales Prices
- Adverse Effects/adjuvant/palliative/Utility Values derived from literature
- An optimized survival arm defined by abs(AI CM) + Max(AI,CM) per Unit Time Formulated as a "Best Case" standard-of-care (SOC) scenario

Patient group	Cost (\$)	IC (\$)	Effect (QALY)	IE (QALY)	iNMB (\$)	ICER (\$/QALY)	Acceptability at WTP (%)
Base Case ADAPT-IT	418,651	-23,395	1.25	0.09	32,353	Dominant	99.64
Base Case CheckMate	442,047	(reference)	1.16	(reference)	(reference)	(reference)	0.36
Optimal CheckMate	494,144	52,098	1.37	0.20	-31,725	255,728	0.00
Control CheckMate	455,701	13,654	1.25	0.09	-4,697	152,439	0.00
Table 2 Becults of	cost offectiv	ionore analy	lic				

IV. Results

0000

Base Case AI demonstrated dominant Incremental Cost-Effectiveness Ratio (ICER) and positive Incremental Net Monetary Benefit (iNMB) values (Table 2)

KLINIKUM

DER UNIVERSITÄT MÜNCHEN

- Base Case AI was optimal cost-effective strategy in 99.64% of Monte Carlo simulations (Figure 4)
- Optimized CM arm only became Cost Effective at a WTP threshold of \$650,000/QALY (Figure 5)

V. Discussion

- Cost-Effectiveness of adaptive treatment was non-inferior to even a theoretical optimal standard of care outcome
- Immunotherapies have varying dose/effect/time ratios compared to chemotherapy
- De-escalation of multimodal treatment strategies can reduce costs based on multiple factors:
 - 1. Lower drug costs/costs for local therapy
 - Lower healthcare utilization (e.g. physician or nursing time costs) 2.
 - Avoidance of costs in the care of adverse events, 3.
 - Increased participation in the work force/productivity 4.
- Patient, Insurance Company, and Societal cost-effectiveness of drug de-escalation will hopefully motivate more such trials
 - These trials are not funded by pharmaceutical companies as they are generally not in their best short term economic interests
- Limitations: Trial data (Phase II), varying 1st-line Tx guidelines, combined cost-estimations

I.	References
	 Larkin, J., et al., Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med, 2019. 381(16): p. 1535-1546.
	 Chapman, P.B., S.P. D'Angelo, and J.D. Wolchok, Rapid eradication of a bulky melanoma mass with one dose of immunotherapy. N Engl J Med, 2015. 372(21): p. 2073-4.
	3. van Boemmel-Wegmann, S., et al., Health Care Utilization and Costs Associated With Systemic First-Line Metastatic Melanoma Therapies in the United States. JCO Oncol Pract. 2022. 18(1): p. e163-e174.
	4. Hussaini, S.M.Q., A. Gupta, and S.B. Dusetzina, <i>Financial Toxicity of Cancer Treatment</i> . JAMA Oncol, 2022.
ļ	5. Postow, M.A., et al., Adaptive Dosing of Nivolumab + Ipilimumab Immunotherapy Based Upon Early, Interim
1	Radiographic Assessment in Advanced Melanoma (The ADAPT-IT Study). Journal of Clinical Oncology.
	 Kohn, C.G., et al., Cost-Effectiveness of Immune Checkpoint Inhibition in BRAF Wild-Type Advanced Melanoma. J Clin Oncol, 2017. 35(11): p. 1194-1202.