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ABSTRACT
Background. In the past decade, the zebrafish community haswidely embraced targeted
mutagenesis technologies, resulting in an abundance of mutant lines. While many lines
have proven to be useful for investigating gene function, many have also shown no
apparent phenotype, or phenotypes not of interest to the originating lab. In order for
labs to document and share information about these lines, we have created ZebraShare
as a new resource offered within ZFIN.
Methods. ZebraShare involves a form-based submission process generated by ZFIN.
The ZebraShare interface (https://zfin.org/action/zebrashare) can be accessed on ZFIN
under ‘‘Submit Data’’. Users download the Submission Workbook and complete the
required fields, then submit the completed workbook with associated images and
captions, generating a new ZFIN publication record. ZFIN curators add the submitted
phenotype and mutant information to the ZFIN database, provide mapping informa-
tion aboutmutations, and cross reference this information across the appropriate ZFIN
databases. We present here examples of ZebraShare submissions, including phf21aa,
kdm1a, ctnnd1, snu13a, and snu13b mutant lines.
Results. Users can find ZebraShare submissions by searching ZFIN for specific alleles or
line designations, just as for alleles submitted through the normal process. We present
several potential examples of submission types to ZebraShare including a phenotypic
mutants, mildly phenotypic, and early lethal mutants. Mutants for kdm1a show no
apparent skeletal phenotype, and phf21aamutants show only amild skeletal phenotype,
yet these genes have specific human disease relevance and therefore may be useful for
further studies. The p120-catenin encoding gene, ctnnd1,was knocked out to investigate
a potential role in brain development or function. The homozygous ctnnd1 mutant
disintegrates during early somitogenesis and the heterozygote has localized defects,
revealing vital roles in early development. Two snu13 genes were knocked out to
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investigate a role in muscle formation. The snu13a;snu13b double mutant has an early
embryonic lethal phenotype, potentially related to a proposed role in the core splicing
complex. In each example, the mutants submitted to ZebraShare display phenotypes
that are not ideally suited to their originating lab’s project directions but may be of
great relevance to other researchers.
Conclusion. ZebraShare provides an opportunity for researchers to directly share
information about mutant lines within ZFIN, which is widely used by the community
as a central database of information about zebrafish lines. Submissions of alleles with
a phenotypic or unexpected phenotypes is encouraged to promote collaborations,
disseminate lines, reduce redundancy of effort and to promote efficient use of time
and resources. We anticipate that as submissions to ZebraShare increase, they will help
build an ultimately more complete picture of zebrafish genetics and development.

Subjects Bioinformatics, Developmental Biology, Genetics, Zoology
Keywords Zebrafish, nhp2l1, lsd1, kdm1a, snu13, phf21a, ctnnd1, Collaboration

INTRODUCTION
In the last decade, use of reverse genetics has become a standard approach to investigate
gene function in zebrafish and other species. With the advent of zinc finger nucleases it
became possible to direct mutagenesis in zebrafish, which became easier with TALENs and
then even simpler with CRISPR-Cas9 technology (Rafferty & Quinn, 2018). The simplicity
of targeted mutagenesis in zebrafish has led to mass production of knockout lines targeting
genes and genetic pathways of interest. Some mutants show phenotypes that have led to
impactful publications, but it is apparent that many more mutants have no phenotypic
defect (a phenotypic), subtle phenotypes, or phenotypes in tissues that are not in the
research focus of the originating lab (Kok et al., 2015; Stainier, Kontarakis & Rossi, 2015).
Although mutants with unexpected phenotypes may sometimes not be pursued by the
originating lab, information about these lines is still critically relevant to the broader
research community. Failure to disseminate these findings and alleles will ultimately lead
to redundant efforts, lost time, and wasted resources. To facilitate information distribution
about zebrafish lines, we have integrated a new feature into the Zebrafish Information
Network (ZFIN) called ‘‘ZebraShare’’. In ZebraShare, users submit an abstract, knockout
sequences, validation steps, and phenotypic information directly to ZFIN. Submissions are
curated by ZFIN staff into the ZebraShare database for public viewing. Future information
or edits can be added to the submission over time, which may include further descriptions
of phenotypes or other relevant information about lines. We anticipate that ZebraShare
will help zebrafish researchers engage in optimized use of their reverse genetics mutants
by avoiding redundancy, sharing phenotypes that would be otherwise lost, and forging
collaborations for future research. Here, we describe the ZebraShare feature of ZFIN. We
begin by describing the submission process and features included which ensure that data
quality can quickly be assessed by ZFIN users. Then, we provide four differing examples
of submissions and for each example provide the rationale for constructing the mutant
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Table 1 gRNA targets used for CRISPR and genotyping primer sequences (5′–3′). These mutants were generated in three separate labs so they
used different mutagenesis and genotyping protocols. Three gRNAs were co-injected for ctnnd1.

Originating lab Gene gRNA target(s) Forward Genotyping Primer Reverse genotyping primer

T7 assay:
GATTTCCTTGCCACTAGCAC

T7 assay:
CCATTAAGAAGCAGCACAGG

DeLaurier phf21aa GTGAGGCTAGCAGCAGGCAG
Traditional genotyping:
AGAATACTGTTGGCCTCCTG

Traditional genotyping:
CCATTAAGAAGCAGCACAGG

DeLaurier kdm1a GGCTCCTCCTCTTCGTCAGG T7 assay/Traditional genotyping:
AAGGAGAAGCCTCTGTCATC

T7 assay/Traditional genotyping:
GAGATGTTTACCTTTGCCCG

Thyme ctnnd1 GGTCCAACTGAGGTCGGCTG,
CCTCCAGGCCATAGGGCTCT,
CTGATCGTCCTCCAGGCCAT

Traditional genotyping:
ATGGCTACCGCACGCTGGAC

Traditional genotyping:
GTGTGGATGTGCCAACCGGGG

HRMA genotyping:
GACTGATCAAGTGCTGTTCTCC

HRMA genotyping:
ATCCAGGATGGTTTTGCTGAGG

Talbot snu13a GAACCCTAAAGCGTACCCTC
DNA sequencing:
TGGCTAATCTTTATGGTTCAGG

DNA sequencing:
CTTCGTTGGCCCCTTTC

HRMA genotyping:
GTCTGTGGTTTTTACTCAGACTG

HRMA genotyping:
CCCCTTTTCTCAGCTGTTTG

Talbot snu13b GAACCCTAAAGCCTATCCTC
DNA sequencing:
TGCTAACCGGATGATAAGAG

DNA sequencing:
CGAGTTATTCACCTTCATTGG

and why the resulting phenotypes lead to ZebraShare submission. Finally, we discuss the
implications of this new sharing system.

MATERIALS & METHODS
Animal stocks and husbandry
We raised and housed zebrafish in standard conditions (Westerfield, 2007) and collected
embryos by natural spawning of adult fish, with embryo staging as described (Kimmel et al.,
1995). All zebrafish experimentation was conducted as approved by Institutional Animal
Care andUseCommittees at theUniversity ofMaine (approval number A2019_10_01), The
Ohio State University (approval number 2012A00000113), the University of Alabama at
Birmingham (approval number 21744), Harvard University (approval number 25-08), the
University of South Carolina (approval number 2485-101478-031720) and the University
of South Carolina Aiken (010317-BIO-01).

Oligonucleotides
Table 1 lists the oligonucleotides used in this study during mutant construction and
genotyping.

phf21aa mutant construction
For phf21aa mutant (phf21aaaik4) construction, wild-type AB embryos were co-injected
with 3 nl of a mixture containing guide RNA targeting exon 6 (ENSDART00000173629.2)
(∼160 ng/µl) along with mRNA encoding nuclear-localized Cas9 (∼160 ng/µl). Nuclear-
localized Cas9 mRNA was synthesized from pCS2-nCas9n (Addgene), linearized with
NotI-HF (New England Biolabs), column purified (Zyppy Plasmid Miniprep kit; Zymo
Research), and mRNA was synthesized (mMessenge mMachine SP6 kit; Thermo Fisher).

DeLaurier et al. (2021), PeerJ, DOI 10.7717/peerj.11007 3/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.11007


Mutagenesis efficiency was detected in groups of F0 embryos (5 pooled × 3 replicates)
using T7 endonuclease (New England Biolabs) digest of PCR fragments flanking the gRNA
target site (PCR product = 995 base-pairs (bp), digestion products are approximately 720
and 275 bp). DNA from potential individual mutants was Sanger sequenced to establish
a line with a 7 bp deletion at the gRNA target site in exon 6 ( phf21aaaik4). This mutation
results in a frameshift mutation producing extensive missense and a premature stop codon
(GenBank accession numbers: wild type MW438986, mutant MW438985). Genotyping
of subsequent individual phf21aaaik4 fish utilized primers flanking the InDel site. PCR
amplification results in a 641 bp product for wild-type DNA and a 634 bp product for
mutant DNA. PCR products are run on a 2.5% agarose gel to resolve bands (wild type =
641 bp, mutant = 634 bp, heterozygotes = 641 + 634 bp bands).

kdm1a mutant construction
For kdm1a mutant (kdm1aaik5) construction, wild-type AB embryos were co-injected
with guide RNA targeting exon 1 (ENSDART00000180532.1) (∼200 ng/µl) along with
mRNA encoding nuclear-localized Cas9 (∼160 ng/µl). Nuclear-localized Cas9 mRNA
was synthesized and injected as described above for phf21aa. Mutagenesis efficiency was
detected in groups of F0 embryos (5 pooled × 3 replicates) using T7 endonuclease digest
of PCR fragments flanking the guide RNA target site (PCR product = 299 bp, digestion
products are approximately 228 and 71 bp), as described for phf21aa. cDNA from individual
potential mutants was Sanger sequenced to establish a line with a 14 bp deletion at the
guide RNA target site in exon 1 (kdm1aaik5). This mutation is predicted to result in a
frameshift producing extensive missense and a premature stop codon. Genotyping of
subsequent individual kdm1aaik5 fish utilizes the same T7 primers flanking the InDel site.
PCR amplification results in a 299 bp product for wild-type DNA and a 285 bp product
for mutant DNA. PCR products are run on a 2.5% agarose gel to resolve bands (wild type
= 299 bp, mutant = 285 bp, heterozygotes = 299 + 285 bp bands).

ctnnd1 mutant construction
The ctnnd1 mutant (ctnnd1uab302) was constructed by injection of three guide RNAs (>50
ng/µl each) and purified Cas9 protein (25 µM) into wild-type EKW embryos. The first
two nucleotides of every guide were changed to 5′-GG- 3′ for high-yield synthesis with T7
polymerase. Heterozygous carriers were initially identified on pools withMiSeq sequencing
and later confirmed with Sanger sequencing. PCR of this 31 bp deletion, results in a 242
bp product for wild-type DNA and a 211 bp product for mutant DNA. PCR products were
separated with standard agarose gel electrophoresis on 4% gels. The injected (F0) fish were
raised to adulthood and F1 carriers confirmed by sequencing were outcrossed to wild-type
EKW fish.

snu13a and snu13b mutant construction
The snu13aoz24 and snu13boz91 mutants were constructed following described methods
(Talbot & Amacher, 2014). An injection mix containing 38 ng/µl of guide RNA targeting
snu13a and 83 ng/µl of mRNA encoding nuclear localized Cas9 (Jao, Wente & Chen, 2013)
was injected into AB fish. For snu13b, the injection was similar except the snu13b guide RNA
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had a concentration of 37 ng/µl. To prepare the Cas9 mRNA we synthesized from pCS2-
nCas9n (Jao, Wente & Chen, 2013) after linearization with NotI (New England Biolabs);
we used a mMessage mMachine kit (Thermo Fisher) to transcribe mRNA and purified the
transcripts using aNucleoSpin II RNA cleanup kit (Machery-Nagel).Mutagenesis efficiency
was determined using High Resolution Melt Analysis (HRMA) (Talbot & Amacher, 2014;
Dahlem et al., 2012). These F1 carriers were outcrossed and identified by testing 16 embryos
per clutch using HRMA. HRMA was again used to pre-screen F1 heterozygote carriers,
which were sequenced using primers specific to snu13a and snu13b. Sequence analysis was
performed on individual snu13a−/−; snu13b−/− embryos.

Histological staining and imaging of skeletal tissue
Larval skeletal samples (phf21aa and kdm1a) were prepared and stained using Alcian
Blue and Alizarin Red dyes as described (Walker & Kimmel, 2007; DeLaurier, Alvarez &
Wiggins, 2019). Samples were flat-mounted and imaged using anOlympus BX41 compound
microscope and Olympus cellSens Standard software (version 1.16).

DAPI-stained embryos
ctnnd1 embryos were left in the chorion and fixed overnight in 4% formaldehyde in PBS.
Embryos were then washed 4 × 5 min in PBS, incubated in DAPI for 30 min, and washed
2 × 5 min in PBS before being mounted in a droplet of 1% low-melting agarose in PBS
on a 35 mm MatTek dish with a No. 1.5 coverslip bottom. Imaging was performed on
a Zeiss LSM700 inverted laser scanning confocal microscope with a Plan-Apochromat
10X/0.45 air objective using 5 µm slices. Maximum intensity projections were produced
from acquired z-stacks in Fiji (Schindelin et al., 2012), and images were scaled to maximize
for visibility.

Live imaging snu13 mutants
Zebrafish embryos from in-cross of snu13aoz24/+; snu13boz91/+ were monitored through
their first 12 h of development, and then imaged using a Leica DMC5400 camera mounted
on a Leica MZ10F microscope at 24 h post-fertilization (hpf).

Live imaging ctnnd1 mutants
ctnnd1 embryos were photographed at approximately the 6-somite stage using identical
magnification and lighting settings across embryos on a Zeiss AXIO ZoomV16microscope
fitted with a PlanNeoFluar Z 1x/0.25 objective and Axiocam 503 color camera. Embryo
photographs were color-balanced using the BIOP SimpleColorBalance plugin in ImageJ
(Schindelin et al., 2012). The time-lapse recording of developing ctnnd1 embryos was made
from approximately the 4–6 somite stage to the 12–14 somite stage using the ‘‘TIME-
LAPSE’’ function on an iPhone 8 mounted to a Zeiss Stemi 2000 stereo microscope with a
Gosky Universal Cell Phone Adapter Mount.

RESULTS
ZebraShare implementation
ZebraShare implements several new features into existing ZFIN functionalities. A
ZebraShare landing page, linked from the ‘‘Submit Data’’ button on the ZFIN home
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Figure 1 Publicizing a mutant on ZebraShare in 5 steps.
Full-size DOI: 10.7717/peerj.11007/fig-1

page, contains a summary of the project and links to the workbook and submission
page (Fig. 1). ZebraShare is designed to fit into ZFIN’s existing publication acquisition
infrastructure, nomenclature, and curation workflows. When completing the ZebraShare
Workbook, researchers are asked to define precise coordinates of the mutation so the
alleles can be described accurately in ZFIN (Fig. 2) and to provide information relevant to
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Figure 2 Example of how to determine DNA coordinates for a simple deletion allele, phf21aaaik4. (A)
Align the WT and mutant sequence. (B) Blast the aligned WT sequence and determine the base numbers
altered in the mutant. (C) Transfer these coordinates to the ZebraShare submission workbook. Descrip-
tions become more complex for combined insertion/deletions alleles (InDels) and for alleles with multiple
mutation sites due to use of multiple guide RNAs.

Full-size DOI: 10.7717/peerj.11007/fig-2

the mutant phenotypes. When uploading this workbook, authors have an opportunity to
enter an abstract describing their allelic and phenotypic characterization (Fig. 3, Table 2).
This abstract is linked to the workbook and any images and captions included in the
submission. Upon creation, ZebraShare submissions are automatically assigned to the
ZFIN nomenclature coordinator. The coordinator vets nomenclature, consults authors
if needed, and after adding alleles to ZFIN with correct nomenclature, assigns the paper
to the high-priority ZebraShare curation queue. Curators complete curation by adding
the remaining details for mutants to the publication and inform the authors that their
submission has been curated. Once a ZebraShare submission is completed, the mutant
alleles and phenotypes can be searched for just like the ZFIN entries curated from papers
(Van Slyke et al., 2018).

Ensuring validated mutant information
ZebraShare provides researchers an opportunity to detail their own validation steps in the
submissionworkbook, whichwill be listed on the allele page. First, researchers enter detailed
descriptions of themutation using a written description, sequence alignment, and predicted
effect on transcript and protein. Then, researchers specify whether the transcript changes
are determined directly from cDNA sequencing or inferred from genomic sequences. A
field is also provided where researchers can specify whether nonsense-mediated decay
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Figure 3 Example of a mutant, phf21aaaik4, publicized via ZebraShare. (A) The allele description page
shows information that helps researchers interpret the mutant. (B) The abstract page gives an overview
of phenotypic characterization. (C) The figure associated with the abstract shows pertinent phenotypic
details. For phf21aaaik4, the mutants appeared normal, save for a mild rotation of the ceratohyal cartilage
(red arrow). Fish larvae are stained with alcian blue (cartilage) and alizarin red (bone) to reveal skeletal
shape. The three scalebars in C each= 200 microns.

Full-size DOI: 10.7717/peerj.11007/fig-3

(NMD) has been assayed, because of the growing concern that compensation may occur
in alleles that induce NMD (Rossi et al., 2015; El-Brolosy et al., 2019). Researchers can
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Table 2 Web addresses for the ZebraShare abstracts for alleles used in case studies.

Allele(s) ZebraShare abstract page

phf21aaaik4 http://zfin.org/ZDB-PUB-190605-16
kdm1aaik5 http://zfin.org/ZDB-PUB-200515-15
ctnnd1uab302 http://zfin.org/ZDB-PUB-200621-10
snu13aoz24, snu13boz91 http://zfin.org/ZDB-PUB-200604-17

state whether mutations have been examined in homozygous embryos from heterozygous
parents, or whether maternal-zygotic knockouts have been examined. Information about
maternal-zygotic outcomes may be particularly important for mutations showing little or
no phenotype in the offspring of heterozygous crosses. While validation experiments are
not required for submission to ZebraShare, these fields are included to provide researchers
an opportunity to communicate this information if desired. Because mutant validation
may be improved after submission, and line availability may change, the following fields
remain editable after submission: ‘Functional Consequence’, ‘Adult Viable’, ‘Maternal
Zygosity Examined’, ‘NMD Apparent’, ‘Other Line Information’, and ‘Available’. Only
the submitting researcher and other researchers designated at the time of mutant allele
submission are able to edit these fields.

Example 1, phf21aa knockout shows a mild craniofacial skeletal
phenotype
phf21aa homozygous mutants develop normally, have no obvious external abnormalities,
and are viable, fertile adults. A slight medial rotation of the ceratohyal cartilage was
detected in whole mount mutant specimens at 7 days post fertilization (dpf) (Fig. 3C)
in maternal-zygotic mutants (7/20) but not detected in heterozygote offspring (35/35).
Flat mount of pharyngeal skeletons reveals no ceratohyal patterning defect in mutants
compared to wild-type siblings (Fig. 3C), suggesting the rotation defect may be the
result of a connective tissue defect not apparent in skeletal preparations. Loss of PHF21A
is associated with Potocki-Shaffer Syndrome (PSS) in humans and is associated with
craniofacial and neurological complications (Kim et al., 2012; Kim et al., 2019). Thus,
although this mutant did not have a skeletal phenotype of interest to the originating
lab, the phf21aa line may have other important uses as a disease model, so information
about this line was provided to ZebraShare (Mishoe & DeLaurier, 2020). Researchers with
interest in pursuing a zebrafish model for PSS may wish to investigate the origin of the
anatomical defect in phf21aa mutants, in double mutants for the zebrafish co-ortholog
for phf21aa, phf21ab, or in combination with mutants for other interacting factors (i.e.,
kdm1a, ZNF198/zmym2, ZNF261/zmym3) (Hakimi et al., 2003; Shi et al., 2004; Lan et al.,
2007; Kim et al., 2012; Kim et al., 2019).

Example 2, kdm1a mutants have no overt skeletal phenotype
kdm1a (zygotic and maternal-zygotic) homozygous mutants develop normally, have no
obvious external abnormalities, and are viable, fertile adults. Analysis of craniofacial skeletal
patterning in kdm1a maternal-zygotic mutants at stages between 4–8 dpf (Fig. 4) reveals
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Figure 4 Skeletal structure is normal in kdm1amaternal zygotic mutants. Wild-type larvae (A–C)
compared with kdm1amaternal zygotic mutant larvae (D–F). (A and D) Whole mount specimens, lateral
view of head skeleton, (B and E) flat mount pharyngeal skeleton, pharyngeal arches 1 and 2, lateral view,
(C and F) flat mount neurocranium, ventral view. Fish larvae are stained as described in Fig. 3. Scale bar=
200 microns.

Full-size DOI: 10.7717/peerj.11007/fig-4

no specific defects in cartilage or bone (21/23) compared to kdm1a wild-type (18/18)
larvae. Because the kdm1a mutant was a phenotypic, the originating lab chose not to
pursue it further. To prevent others from spending redundant effort generating the same
line, information about this mutant was submitted to ZebraShare (DeLaurier et al., 2020).
KDM1A functions as a histone demethylase transcriptional corepressor in a multi-protein
HDAC1/2/CoREST-containing complex (Hakimi et al., 2003; Shi et al., 2004). Humans
with mutations in KDM1A are reported to have craniofacial defects including cleft palate
and developmental delay (Tunovic et al., 2014; Chong et al., 2016); these clinical features
are also found in Kabuki syndrome. In one study (Tunovic et al., 2014), clinical features are
hypothesized to result from the combined effect of mutations in KDM1A and ANKRD11
(Ankrin Repeating Domain-Containing protein 11), the latter of which is associated with
KBG syndrome involving craniofacial phenotypes. PHF21A and KDM1A interact, where
binding of PHF21A to histones is required for the repressive activity of KDM1A (Lan et al.,
2007; Kim et al., 2012). Given that both KDM1A and PHF21A underlie craniofacial defects
in humans, zebrafish mutant models for these genes may be of potential interest to labs
studying human syndromes such as Kabuki, KBG, and PSS-type syndromes.

Example 3, ctnnd1 mutants disintegrate by 24 hpf
The ctnnd1 gene was knocked out because it is within a locus associated with
neuropsychiatric disorders (Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014) and the related gene CTNND2 has been linked to autism (Turner et
al., 2015). Prior analysis using a ctnnd1morpholino (MO) noted embryonic disassociation
at high doses and bent tails at lower doses (Hsu et al., 2012); however, without mutant
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validation these ctnnd1-MO phenotypes are difficult to distinguish from non-specific
morpholino toxicity (Stainier et al., 2017; Robu et al., 2007; Bedell, Westcot & Ekker, 2011).
Consistent with a requirement for ctnnd1 in embryonic viability, in-cross of ctnnd1
heterozygotes yields no homozygous mutants 6 dpf (N = 44 wild type, 56 het, 0 mutant,
Chi Square analysis P < 0.0001). Subsequent analysis revealed that the ctnnd1 homozygotes
proceed through cleavage stages and gastrulate but typically die between the 4 and 12 somite
stages (Figs. 5A and 5B). Embryonic death occurs via cellular disassociation (Fig. 5C),
initiating at the head or the tailbud (Movie S1). In ctnnd1 heterozygotes, small clumps
of cells briefly appear on the embryo’s dorsal surface during early somitogenesis stages,
typically over the mid- or hindbrain regions (Figs. 5D–5F). Given that the homozygote
fully disassociates, the heterozygote’s small clumps of ectopic cells may represent localized
points of disassociation. Genotyping at 12 hpf confirms that 24/24 ‘‘dying’’ embryos are
homozygous mutant, 25/25 embryos with ectopic cells are heterozygous, and 23/23 healthy
embryos are wild type (Chi Square analysis P < 0.001). Because early lethality precludes
analysis of neural phenotypes, information about the ctnnd1 mutants was deposited in
ZebraShare (Thyme & Carte, 2020). Consistent with the zebrafish findings, the p120-
catenin protein encoded by ctnnd1 has several known roles in early development, and
murine loss-of-function models are embryonic lethal when homozygous (Hernández-
Martínez, Ramkumar & Anderson, 2019). The mouse Ctnnd1 neural crest knockout
line shows cleft palate when heterozygous, and consistent defects are seen in humans
heterozygous forCTNND1 truncation alleles (Alharatani et al., 2020). Ctnnd1 is involved in
cadherin stabilization, WNT signaling during gastrulation and epithelial-to-mesenchymal
transitions, and suppression of the RhoA–ROCK–myosin pathway (Pieters et al., 2016;
Yu et al., 2016; Hernández-Martínez, Ramkumar & Anderson, 2019). It is unclear which
of these functions are the direct cause of the zebrafish ctnnd1 defects and researchers
interested in any of these mechanisms and/or in CTNND1-related human disease may find
this mutant useful.

Example 4, snu13a;snu13b double mutants arrest during
somitogenesis
Previous analysis of Snu13 gene function in flies and zebrafish supported a specific role
in muscle formation (Johnson et al., 2013; Williams et al., 2015). To further test this role,
the two zebrafish genes, snu13a and snu13b, were knocked out. DNA sequencing of the
resulting mutants indicates that they both cause frameshift and premature stop codons.
The snu13a−/− and snu13b−/− single mutants are both overtly indistinguishable from
wild-type siblings (not shown). Embryos homozygous for the two mutations (snu13a−/−;
snu13b−/−) appear normal until 10 hpf but their development ceases to progress by 12
hpf, after which the cells linger in place and typically become necrotic by 24 hpf (Fig. 6).
Some of the fish with this severe phenotype are homozygotically mutant for snu13b but
only heterozygous for snu13a (snu13a+/−; snu13b−/−). These snu13a+/−; snu13b−/− fish
are often indistinguishable from the double mutant shown in Fig. 6, but are sometimes
indistinguishable from wild-type siblings (40 with wild-type phenotype were genotyped:
0 are snu13a−/−; snu13b−/−, 7 are snu13a−/+; snu13b−/−. 24 showing developmental
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Figure 5 Embryonic disintegration in ctnnd1mutants. (A, B) Frames from time-lapse imaging (Movie
S1) illustrate disintegrating phenotype of ctnnd1mutants. Asterisk(s) mark two of the embryos that disin-
tegrated during the time-lapse recording. (C) DAPI staining of fixed ctnnd1mutant embryos reveals that
cells with intact nuclei dissociate from the embryo. (D–F) Phenotypes of ctnnd1 sibling embryos at the 6-
somite stage. The homozygous mutant (F) has disintegrated, the heterozygous mutant (E) displays clumps
of cells along the dorsal surface, and the wild-type embryo appears normal (D). The solid arrow marks a
clump of cells dorsal to the midbrain and the open arrowhead marks a clump of cells dorsal to the hind-
brain in the heterozygote.

Full-size DOI: 10.7717/peerj.11007/fig-5

halt were genotyped: 9 are snu13a−/−; snu13b−/−, 16 are snu13a+/−; snu13b −/−, Chi
Square analysis P < 0.0001). These findings reveal that embryonic development can only
sometimes proceed through somitogenesis stages when snu13 function is strongly reduced
(snu13a+/−; snu13b−/−) and cannot proceed in the absence of snu13 gene function
(snu13a−/−; snu13b−/−). A severe developmental halt is likely explained by a requirement
for Snu13 protein in assembly of the core spliceosome (Stevens et al., 2001; Dobbyn &
O’Keefe, 2004; Oruganti, Zhang & Li, 2005; Rothé et al., 2014; Diouf et al., 2018). These
mutant phenotypes demonstrate that snu13a and snu13b gene function is essential to
organismal viability and development past early embryogenesis. This severe embryonic
phenotype impeded further investigation of muscle formation; however, these lines may be
valuable to the broader research community, so information about the snu13a and snu13b
mutants was submitted to ZFIN via ZebraShare (Gallati & Talbot, 2020). The mutants may
be of interest to researchers investigating the core spliceosome, or as a comparison group
for investigation of alternative splicing pathways. These mutants may also be useful to labs
studying the maternal to zygotic transition because both snu13a and snu13b are expressed
prior to zygotic genome activation (Papatheodorou et al., 2018).
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Figure 6 Embryonic development arrests in snu13a;snu13b double mutants. (A) Normal sibling and
(B) snu13a;snu13b double mutant at 24 hpf. Tail region is outlined in orange, head in blue. The shown
double mutant was confirmed to be homozygous by Sanger sequencing. Scale bar is 1 mm.

Full-size DOI: 10.7717/peerj.11007/fig-6

DISCUSSION
Currently, there is no comprehensive zebrafish mutant library that parallels those available
for yeast, drosophila, and worms (Winzeler et al., 1999; Thurmond et al., 2019; Harris et al.,
2020). While large scale mutagenesis projects are being undertaken, such as the Sanger
Targeting Induced Local Lesions in Genomes (TILLING) screen (Kettleborough et al.,
2013), in most examples these mutant collections exist only in untested frozen sperm that
carry many mutations in other genes. ZebraShare is intended to expand the ZFIN mutant
collection by encouraging labs to publicize characterized alleles that lack an obvious route
to traditional publication (Fig. 7A) and is a suitable destination for archiving information
about alleles that labs may not plan to pursue.

Lines submitted to ZebraShare are publicly visible, and the abstracts can be cited, but
the submissions may not include some information vital to journal publication, such as
details about mutant construction. For instance, in this manuscript we cite abstracts of
ZebraShare submissions but also include details about mutant construction in ourmethods
section. To include these details, we needed to collect and coordinate information from
each originating lab. Likewise, if other researchers would like to incorporate ZebraShare
data into their own traditional publications, they should contact the lab which originated
the mutant line. Thus, the ZebraShare system is intended to facilitate dissemination
of unpublished mutant information and collaboration formation, to complement and
enhance traditional routes of publication.

In this paper, we provide examples of mutants that we publicized using ZebraShare, such
as a phenotypic alleles (kdm1a), mildly phenotypic (phf21aa), and those with severe early
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Figure 7 A decision tree on whether to publicize findings in ZebraShare. (A) A ZebraShare submission
immediately disseminates your information to the scientific community and also can serve as a pathway to
journal publication. (B) Comparison of correct and misplaced ZebraShare submissions, with solutions for
incorrect uses.

Full-size DOI: 10.7717/peerj.11007/fig-7
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defects (snu13a;snu13b and ctnnd1). The diversity in described early lethal phenotypes,
snu13a;snu13b arrests and ctnnd1 disintegrates, highlight the reality that different processes
can underlie embryonic death. The observation that some snu13a+/−; snu13b−/− fish can
proceed through somitogenesis while others cannot underscores variation often observed in
mutant phenotypes, which is potentially influenced by genetic or environmental modifiers.
New discoveries may stimulate new interest in submitted lines. While there was no clear
disease connection when the ctnnd1 homozygous lethal phenotypes were submitted
to ZebraShare, subsequent analysis of the heterozygote reveals a more specific cellular
disassociation at the embryo’s dorsal edge, which could potentially be related to neural
crest defects recently reported in humans with CTNND1 gene variants (Alharatani et al.,
2020). Finally, ZebraShare may also provide information about alleles which reproduce
phenotypes found already in publication and offers a way to quickly share phenotypes that
verify or contradict the literature.

We generated ZebraShare to help researchers disseminate information about mutants
which have no clear path to standard journal publication, including mutants that have no
overt phenotypic defect. When mutants lack a desired phenotype, researchers may dismiss
the finding because of compensatory mechanisms like gene redundancy, transcriptional
compensation, unexpected splice variants, and maternal contributions (Ciruna et al., 2002;
Rossi et al., 2015; Anderson et al., 2017; El-Brolosy et al., 2019). While these compensatory
mechanisms sometimes do explain a lack of phenotype, the absence of phenotypic defect
does not constitute evidence that one of these mutation-bypassing mechanisms are being
used. In many cases a phenotypic mutants provide genuine insights into gene function. We
strongly believe that the dissemination of information about such unexpected phenotypes
is necessary to reduce duplicate effort and to foster honest, open discussion about the
necessity, redundancy, and interactions between individual genes in zebrafish.

ZebraShare complements other rapid mutant dissemination platforms (Fig. 7B). For
instance, CRISPRz allows researchers to share information about CRISPR guide RNAs but
does not describe alleles generated nor mutant phenotypes (Varshney et al., 2016). Several
researchers have put forward their ownwebsites for describingmutants and transgenes (e.g.,
https://kawakami.lab.nig.ac.jp/), although individual lab websites may not be completely
integrated into ZFIN. ZebraShare is conceptually similar to the ZFIN antibody and protocol
wikis, which have provided valuable information to the zebrafish community for many
years (Bradford et al., 2011;Howe et al., 2016). Unlike these wiki-style submissions to ZFIN,
ZebraShare submissions are manually curated by ZFIN staff and are directly integrated
into the database itself rather than as a separate wiki. ZFIN already accepts large datasets
of less-characterized mutants and other direct submissions (Howe et al., 2016), which has
been used by the Sanger TILLING project and several North American TILLING projects
(Moens et al., 2008; Kettleborough et al., 2013 among others); however, ZebraShare is the
first mechanism for labs to disseminate detailed information about individual mutations
and phenotypes on ZFIN. Thus, ZebraShare fills a key niche by enabling individual labs
to directly submit allelic and phenotypic information for up to a few mutants in ZFIN
(Fig. 7B).
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In the long term, ZebraShare will serve to facilitate reporting from our community’s
collective project and enable the field to report about the function of more genes than
can be communicated exclusively through traditional publications. We anticipate that
researchers will contribute information about multiple alleles within individual genes as
this information becomes available. Different lesions for single genes may have slightly
different effects on RNA/protein (e.g., premature stop vs., splice error, vs. deletion of
functional domains). Thus, deposition of information about multiple alleles will be
extremely useful as our community discerns whichmutation types have the strongest effects
on development, and may influence the dialogue about discrepancies between morpholino
and mutant data (Kok et al., 2015; Stainier, Kontarakis & Rossi, 2015; El-Brolosy et al., 2019;
Tessadori et al., 2020). The ease of sharing will encourage examples and insights into how
gene redundancy, maternal effect, and other ‘obscuring’ factors influence phenotypic
severity. Furthermore, the simple ZebraShare submission process opens up opportunities
for undergraduates, rotation students, and other new scientists to gain the transformative
experience of describing and publicizing their findings in a formal and permanent manner
with the broader community.

CONCLUSIONS
ZebraShare was conceived and developed in response to a community-wide need for a
simple and centralized means to share information about alleles, particularly about a
phenotypic lines (e.g., kdm1a), or mild or unexpected phenotypes (e.g., phf21aa). Yet,
researchers may also want to submit mutants with strong and interesting phenotypes that
are outside of the scope of their normal work. For instance, we show a role for ctnnd1 in
embryonic integrity, and a role for snu13 genes in development past early somite stages.
We anticipate that over time with community submissions growing, ZebraShare will be a
valuable resource to facilitate active collaborations on submitted alleles, inform investigators
of existing lines, provide preliminary information about potential roles of genes and variants
of mutant alleles for those genes, and promote sharing and communication about mutant
alleles within the field.
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